Evaluar la suma \sum^{n}_{k=1}\sum^{k}_{r=0}r\binom{n}{r}
\bf{Attempt:} En \sum^{n}_{k=1}\sum^{k}_{r=0}r\binom{n}{r} = \sum^{n}_{k=1}\sum^{k}_{r=0}\left[r\cdot \frac{n}{r}\binom{n-1}{r-1}\right] = n\sum^{n}_{k=1}\sum^{k}_{r=0}\binom{n-1}{r-1}
Así que = n\sum^{n}_{k=1}\bigg[\binom{n-1}{0}+\binom{n-1}{1}+\cdots +\binom{n-1}{k-1}\bigg]
Alguien podría ayudarme a solucionarlo, gracias.