3 votos

Estadística suficiente para normal bivariante o multivariante

Aquí en la página 7, ejemplo 2.7. La afirmación es que se dispone de estadísticas suficientes para $d$ normal multivariante dimensional $\mathbf{x}_i \sim N(\vec{\mu}, \Sigma)$ es $$\left(n^{-1}\sum_{i=1}^n \mathbf{x}_i, \hat{\Sigma} \right)\,,$$ donde $\hat{\Sigma} := \sum_{i=1}^n\mathbf{x}_i\mathbf{x}^T_i - \left(n^{-1}\sum_{i=1}^n \mathbf{x}_i\right)\left(n^{-1}\sum_{i=1}^n \mathbf{x}_i\right)^T$ .

¿Dónde puedo encontrar la derivación de este resultado? Gracias.

9voto

Lev Puntos 2212

Como W. Huber intentó hacerle concluir, la suficiencia es una simple consecuencia de observar la probabilidad: \begin{align*} f(\mathbf{x}_1,\ldots,\mathbf{x}_n|\boldsymbol{\mu},\boldsymbol{\Sigma}) &\propto |\boldsymbol{\Sigma}|^{-n/2}\,\exp\frac{-1}{2}\left\{\sum_{i=1}^n (\mathbf{x}_i-\boldsymbol{\mu})^\text{T}\boldsymbol{\Sigma}^{-1}(\mathbf{x}_i-\boldsymbol{\mu})\right\}\\ &=|\boldsymbol{\Sigma}|^{-n/2}\,\exp\frac{-1}{2}\left\{\sum_{i=1}^n (\bar{\mathbf{x}}-\boldsymbol{\mu})^\text{T}\boldsymbol{\Sigma}^{-1}(\bar{\mathbf{x}}-\boldsymbol{\mu})\right\}\\ &\quad \times\exp\frac{-1}{2}\left\{\sum_{i=1}^n (\mathbf{x}_i-\bar{\mathbf{x}})^\text{T}\boldsymbol{\Sigma}^{-1}(\mathbf{x}_i-\bar{\mathbf{x}})\right\}\\ &=|\boldsymbol{\Sigma}|^{-n/2}\,\exp\frac{-n}{2}(\bar{\mathbf{x}}-\boldsymbol{\mu})^\text{T}\boldsymbol{\Sigma}^{-1}(\bar{\mathbf{x}}-\boldsymbol{\mu})\\ &\quad \times\exp\frac{-1}{2}\left\{\sum_{i=1}^n (\mathbf{x}_i-\bar{\mathbf{x}})^\text{T}\boldsymbol{\Sigma}^{-1}(\mathbf{x}_i-\bar{\mathbf{x}})\right\}\\ &=|\boldsymbol{\Sigma}|^{-n/2}\,\exp\frac{-n}{2}(\bar{\mathbf{x}}-\boldsymbol{\mu})^\text{T}\boldsymbol{\Sigma}^{-1}(\bar{\mathbf{x}}-\boldsymbol{\mu})\\ &\quad \times\exp\frac{-1}{2}\text{tr}\left\{\sum_{i=1}^n (\mathbf{x}_i-\bar{\mathbf{x}})^\text{T}\boldsymbol{\Sigma}^{-1}(\mathbf{x}_i-\bar{\mathbf{x}})\right\}\\ &=|\boldsymbol{\Sigma}|^{-n/2}\,\exp\frac{-n}{2}(\bar{\mathbf{x}}-\boldsymbol{\mu})^\text{T}\boldsymbol{\Sigma}^{-1}(\bar{\mathbf{x}}-\boldsymbol{\mu})\\ &\quad \times\exp\frac{-1}{2}\text{tr}\left\{\sum_{i=1}^n \boldsymbol{\Sigma}^{-1}(\mathbf{x}_i-\bar{\mathbf{x}})(\mathbf{x}_i-\bar{\mathbf{x}})^\text{T}\right\}\\ &=|\boldsymbol{\Sigma}|^{-n/2}\,\exp\frac{-n}{2}(\bar{\mathbf{x}}-\boldsymbol{\mu})^\text{T}\boldsymbol{\Sigma}^{-1}(\bar{\mathbf{x}}-\boldsymbol{\mu})\\ &\quad \times\exp\frac{-1}{2}\text{tr}\left\{ \boldsymbol{\Sigma}^{-1}\widehat{\boldsymbol{\Sigma}}\right\}\\ \end{align*} Por tanto, esta probabilidad sólo depende de dos funciones de la muestra, $\bar{\mathbf{x}}$ y $\widehat{\boldsymbol{\Sigma}}$ . $\qquad{ }$ Q.E.D.

Nota: debe identificarse al autor del documento adjunto. Más cuando es el estadístico estelar Jon Wellner ¡!

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X