Digamos que tenemos un campo vectorial $X = (2x+y) \partial x + x \partial y$ y un difeomorfismo $f(x,y) = (x-2y,2x+y)$ entonces necesito saber cómo encontrar los campos vectoriales de X relacionados con f, digamos $\overline{X}$ . Es decir, los que se reúnen:
$\overline{X} \circ f = \partial f \circ X \Rightarrow \overline{X} = \partial f \circ X \circ f^{-1}$
Desde $f^{-1} = \left(\frac{x+2y}{5},\frac{y-2x}{5}\right)$
$X \circ f^{-1} = \left[2(x \circ f^{-1})+(y \circ f^{-1})\right] \partial (x \circ f^{-1}) + \left[x \circ f^{-1}\right] \partial (y \circ f^{-1}) = \left[2(\frac{x+2y}{5})+(\frac{y-2x}{5})\right] \partial (\frac{x+2y}{5}) + \left[\frac{x+2y}{5}\right] \partial (\frac{y-2x}{5}) = y (\frac{1}{5}\partial x +\frac{2}{5}\partial y) + \left[\frac{x+2y}{5}\right] (-\frac{2}{5}\partial x +\frac{1}{5}\partial y) = \frac{y-2x}{25}\partial x + \frac{12y+x}{25}\partial y$
Y como $\partial f = (\partial x -2 \partial y , 2 \partial x +\partial y)$
$\overline{X} = \partial f \circ X \circ f^{-1} = (\partial x -2 \partial y , 2 \partial x +\partial y) \circ \left(\frac{y-2x}{25}\partial x + \frac{12y+x}{25}\partial y\right)$
Y la composición anterior daría un objeto de dos componentes, que difiere de lo que yo intentaba obtener, un campo vectorial.
Por favor, díganme cómo enfocar esto.
Edita1: Así que he visto que tenía dos errores principales en lo que he presentado anteriormente.
-
El primer error es que no se $\partial f$ pero $d f$ que corresponde a la matriz jacobiana.
-
El otro error estaba relacionado con $(x \circ f^{-1})$ y $(y \circ f^{-1})$
Así que la forma correcta de resolver el problema sería:
$\overline{X} \circ f = d f \circ X \Rightarrow \overline{X} = d f \circ X \circ f^{-1}$
Desde $f^{-1} = \left(\frac{x+2y}{5},\frac{y-2x}{5}\right)$
$X \circ f^{-1} = \left[2(x \circ f^{-1})+(y \circ f^{-1})\right] \partial x + \left[x \circ f^{-1}\right] \partial y = \left[2(\frac{x+2y}{5})+(\frac{y-2x}{5})\right] \partial x + \left[\frac{x+2y}{5}\right] \partial y = y \partial x + \frac{x+2y}{5}\partial y $
Y el resultado anterior puede verse como el vector columna $\begin{pmatrix}y \\ \frac{x+2y}{5} \end{pmatrix}$
Y como $d f =\begin{pmatrix}\frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y}\\\frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y}\end{pmatrix} = \begin{pmatrix}1 & -2\\2 & 1\end{pmatrix}$
$\overline{X} = d f \circ X \circ f^{-1} = \begin{pmatrix}1 & -2\\2 & 1\end{pmatrix}\begin{pmatrix}y \\ \frac{x+2y}{5} \end{pmatrix} = \begin{pmatrix}\frac{y-2x}{5} \\ \frac{x+12y}{5} \end{pmatrix} = \frac{y-2x}{5}\partial x + \frac{x+12y}{5} \partial y$