En R3 , dejemos que L=span(1,1,0) y que T:R3→R3 sea una rotación por π/4 alrededor del eje L . Elige cualquier dirección. Aceptamos el hecho de que T es una transformación lineal. Halla la matriz de T.
Primero encontré una base ortonormal para L⊥ : { (−1√2,1√2,0),(0,0,1) } y la ampliamos a una base ortonormal para R3 : α={(−1√2,1√2,0),(0,0,1),(1,0,0)}.
Ahora quiero encontrar la matriz α[T]α así que tengo que encontrar T(−1√2,1√2,0) , T(0,0,1) y T(1,0,0) pero no tengo ni idea de cómo hacerlo, es decir, ni idea de cómo rotar geométricamente estos vectores para encontrar su traslación.