$\iiint_V (xy+yz+zx) \mathrm{d}x\mathrm{d}y\mathrm{d}z$
$V: x\geq 0 , y \geq 0 , 0\leq z \leq 1, x^2+y^2\leq 1$
La integral triple es $\frac{11}{24}$
La primera manera: \begin{array}{l} =\frac{1}{2} \iint_{S}\left(x^{2} y \mathrm{d} y \mathrm{d} z+y^{2} z \mathrm{d} z \mathrm{d} x+z^{2} x \mathrm{d} x \mathrm{d} y\right) \\ =\frac{1}{2}\left[\iint_{D_{y z}}\left(1-y^{2}\right) y \mathrm{d} y \mathrm{d} z+\iint_{D_{z x}}\left(1-x^{2}\right) z \mathrm{d} z \mathrm{d} x+\iint_{D_{x y}} x \mathrm{d} x \mathrm{d} y\right] \\ =\frac{1}{2}\left[\int_{0}^{1} \mathrm{d} y \int_{0}^{1}\left(1-y^{2}\right) y \mathrm{d} z+\int_{0}^{1} \mathrm{d} x \int_{0}^{1}\left(1-x^{2}\right) z \mathrm{d} z+\int_{0}^{1} x \mathrm{d} x \int_{0}^{\sqrt{1-x^{2}}} \mathrm{d} y\right] \\ =\frac{1}{2}\left[\int_{0}^{1}\left(1-y^{2}\right) y \mathrm{d} y+\frac{1}{2} \int_{0}^{1}\left(1-x^{2}\right) \mathrm{d} x+\int_{0}^{1} x \sqrt{1-x^{2}} \mathrm{d} x\right] \\ =\frac{11}{24} \end{array} La segunda manera: \begin{array}{l} =\frac{1}{2} \iint_{S}\left(x y z\mathrm{d} y \mathrm{d} z+x y z \mathrm{d} z \mathrm{d} x+xyz \mathrm{d} x \mathrm{d} y\right) \\ =\iint_{D_{y z}}\left(1-y^{2}\right) y z \mathrm{d} y \mathrm{d} z+\iint_{D_{z x}} x\left(1-x^{2}\right) z \mathrm{d} z \mathrm{d} x+\iint_{D_{x y}} xy \mathrm{d} x \mathrm{d} y \\ = 2\int_0^1\mathrm{d} z \int_0^1 (1-y^2)yz \mathrm{d} y+\int_0^1\mathrm{d}x\int_{0}^{\sqrt{1-x^2}} xy \mathrm{d} y\\ =2\times\frac{1}{2}\times(\frac{1}{2}-\frac{1}{4})+\frac{1}{2}\times(\frac{1}{2}-\frac{1}{4})\\ =\frac{3}{8} \end{array}