Denote
$${I_n = \int\frac{\sin^{2n}(x)}{1 + \cos^2(x)}dx}$$
Entonces
$${I_{n}=\int\sin^2(x)\frac{\sin^{2n-2}(x)}{1+\cos^2(x)}dx=\int(1-\cos^2(x))\frac{\sin^{2n-2}(x)}{1+\cos^2(x)}dx}$$
Si amplía esto, obtendrá
$${=I_{n-1} - \int \cos^2(x)\frac{\sin^{2n-2}(x)}{1+\cos^2(x)}dx=I_{n-1}-\int \sin^{2n-2}(x) - \frac{\sin^{2n-2}(x)}{1+\cos^2(x)}dx}$$
Por lo tanto
$${I_{n}=2I_{n-1} - \int \sin^{2n-2}(x)dx}$$
Ahora defina ${S_n = \int\sin^{2n}(x)dx}$ . Entonces
$${S_{n}=\int \sin^2(x)\sin^{2n-2}(x)dx=S_{n-1}-\int \cos^2(x)\sin^{2n-2}(x)dx}$$
En la integral de la derecha, utilizando la integración por partes se obtiene
$${\int\cos^2(x) \sin^{2n-2}(x)dx=\frac{\cos(x)\sin^{2n-1}(x)}{2n-1}+\frac{1}{2n-1}\int \sin^{2n}(x)dx}$$
Así que en general
$${\Rightarrow S_n = S_{n-1}-\frac{\cos(x)\sin^{2n-1}(x)}{2n-1} - \frac{1}{2n-1}S_n}$$
Y así
$${\left(\frac{2n}{2n-1}\right)S_n = S_{n-1} - \frac{\cos(x)\sin^{2n-1}(x)}{2n-1}}$$
$${\Rightarrow S_n = \frac{(2n-1)S_{n-1}}{2n} - \frac{\cos(x)\sin^{2n-1}(x)}{2n}}$$
Ahora tienes dos relaciones recursivas que te ayudarán a calcular la integral para mayores incluso poderes de ${\sin(x)}$ :
$${I_n = 2I_{n-1} - S_{n-1}}$$
$${S_{n} = \frac{(2n-1)S_{n-1}}{2n} - \frac{\cos(x)\sin^{2n-1}(x)}{2n}}$$