Se da $a=\begin{pmatrix} y-z \\ 3x \\ 2x \end{pmatrix} $ y puntos $A=(3,1,-2)$ y $D=(4,2,1)$ . Dar parametrización $t\in \left[0,1\right]$
$x=?$ Solución: $t+3$
$y=?$ Solución: $t+1$
$z=?$ Solución: $3t-2$
Se da $a=\begin{pmatrix} y-z \\ 3x \\ 2x \end{pmatrix} $ y puntos $A=(3,1,-2)$ y $D=(4,2,1)$ . Dar parametrización $t\in \left[0,1\right]$
$x=?$ Solución: $t+3$
$y=?$ Solución: $t+1$
$z=?$ Solución: $3t-2$
Si intenta encontrar una parametrización entre $A$ y $D$ podemos crear ${\bf v} = \vec{D} - \vec{A}= (4,2,1) - (3,1,-2) = (1,1,3)$ . Por lo tanto, si queremos hacer una línea en $3D$ de paso $A$ y $D$ necesitamos el vector paralelo a la recta y un punto inicial. Tomemos el punto $A$ .
Entonces, $$\begin{align}\vec{r}(t) & = \vec{A} + t{\bf v} \\ &= (3,1,-2) + t(1,1,3) \\ &=(3 + t, 1 + t, -2+3t) \\&=(\underbrace{t+3}_{x(t)}, \underbrace{t+1}_{y(t)}, \underbrace{3t-2}_{z(t)}). \tag{Rearrange terms}\end{align}$$
Por lo tanto, obtenemos que $$\begin{align}a &= \pmatrix{y-z\\ 3x\\ 2x} \\&= \pmatrix{(t+1) - (3t-2)\\3(t+3)\\2(t+3)} \tag{Substitute in $x,y,z$}\\ &=\pmatrix{-2t+3 \\ 3t+9 \\ 2t+6} \tag{Combine like terms}\\ &= \pmatrix{-2\\3\\2}t + \pmatrix{3\\9\\6}\tag{Simplify}\end{align}$$
I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.