A continuación se muestra cómo hallar el límite superior, la integración por partes da
$$ \int _{0}^{1}\!{{\rm e}^{{x}^{2}}}{dx}={{\rm e}}-\int _{0}^{1}\!2 \,{x}^{2}{{\rm e}^{{x}^{2}}}{dx}$$
Utilizando el hecho de que
$$ 2\,{x}^{2}+2\,{x}^{4}+{x}^{6}+1/3\,{x}^{8}+1/12\,{x}^{10}+{\frac {1}{ 60}}\,{x}^{12}\leq 2\,{x}^{2}{{\rm e}^{{x}^{2}}}$$
da
$$ \int _{0}^{1} (\!2\,{x}^{2}+2\,{x}^{4}+{x}^{6}+1/3\,{x}^{8}+1/12\,{x}^{ 10}+{\frac {1}{60}}\,{x}^{12}){dx}\leq \int _{0}^{1}\!2\,{x}^{2}{ {\rm e}^{{x}^{2}}}{dx}\,,$$
ya que ambas funciones son positivas. Multiplicando ambos lados de la desigualdad anterior por -1, se obtiene,
$$-\int _{0}^{1}(\!2\,{x}^{2}+2\,{x}^{4}+{x}^{6}+1/3\,{x}^{8}+1/12\,{x}^{ 10}+{\frac {1}{60}}\,{x}^{12}){dx}\geq -\int _{0}^{1}\!2\,{x}^{2}{ {\rm e}^{{x}^{2}}}{dx}$$
sumando e a ambos lados de la última desigualdad se obtiene
$$ e-\int _{0}^{1}(\!2\,{x}^{2}+2\,{x}^{4}+{x}^{6}+1/3\,{x}^{8}+1/12\,{x}^{ 10}+{\frac {1}{60}}\,{x}^{12}){dx}\geq e-\int _{0}^{1}\!2\,{x}^{2}{ {\rm e}^{{x}^{2}}}{dx}$$
Evaluando la integral de la serie de potencias aproximada se obtiene el límite superior
$$ \int _{0}^{1}\!{{\rm e}^{{x}^{2}}}{dx} = e-\int _{0}^{1}\!2\,{x}^{2}{ {\rm e}^{{x}^{2}}}{dx} \leq 1.462863173 < 1.463 $$