Supongamos que ${{\bf{\xi }}\sim N({\bf{0}},{\bf{I}})}$ entonces $${\bf{x}} = {\bf{\hat x}} + {{\bf{P}}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}{\bf{\xi }}$$ donde ${\bf{P}}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. 2}}}$ es una matriz triangular inferior o la descomposición Cholesky de $\bf{P}$ tal que ${{\bf{P}}^{\frac{1}{2}}}{({{\bf{P}}^{\frac{1}{2}}})^T} = {\bf{P}}$ .
Cambiando la variable de integración de $x$ a $\xi$ debemos conseguir (1)
$$\int_{{{\bf{x}}_1}}^{{{\bf{x}}_2}} {{\bf{g}}({\bf{x}})N({\bf{x}};{\bf{\hat x}},{\bf{P}})} d{\bf{x}} = \int_{_{{\bf{\xi }}1}}^{{{\bf{\xi }}_2}} {{\bf{g}}({\bf{\hat x}} + {{\bf{P}}^{\frac{1}{2}}}{\bf{\xi }})N({\bf{\xi }};{\bf{0}},{\bf{I}})} d{\bf{\xi }}$$ .
Sin embargo, creo que la sustitución correcta es $$\begin{array}{l} {\bf{x}} = {\bf{\hat x}} + {{\bf{P}}^{\frac{1}{2}}}{\bf{\xi }} \to d{\bf{x}} = d({{\bf{P}}^{\frac{1}{2}}}{\bf{\xi }}) = d{\bf{\xi }}{{\bf{P}}^{\frac{1}{2}}} = {({{\bf{P}}^{\frac{1}{2}}})^T}d{\bf{\xi }}\\ \int_{{{\bf{x}}_1}}^{{{\bf{x}}_2}} {{\bf{g}}({\bf{x}})N({\bf{x}};{\bf{\hat x}},{\bf{P}})} d{\bf{x}}\mathop = \limits^{{\bf{x}} = {\bf{\hat x}} + {{\bf{P}}^{\frac{1}{2}}}{\bf{\xi }}} \int_{_{{\bf{\xi }}1}}^{{{\bf{\xi }}_2}} {{\bf{g}}({\bf{\hat x}} + {{\bf{P}}^{\frac{1}{2}}}{\bf{\xi }})N({\bf{\xi }};{\bf{0}},{\bf{I}})} \underbrace {{{({{\bf{P}}^{\frac{1}{2}}})}^T}}_{{\rm{???}}}d{\bf{\xi }} \end{array}$$ Entonces, ¿qué pasará con el término ${{{({{\bf{P}}^{\frac{1}{2}}})}^T}}$ ?