2 votos

Relatividad especial - Impulsos perpendiculares equivalen a una rotación tras un impulso

[Pregunta] Hace poco leí que dos impulsos perpendiculares de Lorentz equivalen a una rotación después de un impulso. ¿Puede alguien mostrarme un ejemplo de esto? Gracias por su tiempo y su ayuda.

Fuente: Ninguna - (no es una pregunta de deberes)

4voto

sata Puntos 91

He aquí un ejemplo explícito. Las filas y columnas de la matriz están en el orden habitual $t,x,y,z$ .

$$ \left( \begin{array}{cccc} \frac{2}{\sqrt{3}} & 0 & -\frac{1}{\sqrt{3}} & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{3}} & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) \left( \begin{array}{cccc} \frac{2}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & 0 & 0 \\ -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) = \left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \frac{4 \sqrt{3}}{7} & -\frac{1}{7} & 0 \\ 0 & \frac{1}{7} & \frac{4 \sqrt{3}}{7} & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) \left( \begin{array}{cccc} \frac{4}{3} & -\frac{2}{3} & -\frac{1}{\sqrt{3}} & 0 \\ -\frac{2}{3} & \frac{25}{21} & \frac{2}{7 \sqrt{3}} & 0 \\ -\frac{1}{\sqrt{3}} & \frac{2}{7 \sqrt{3}} & \frac{8}{7} & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) $$

Dejaré que confirme la igualdad, y que el lado izquierdo representa un aumento por $c/2$ a lo largo del $x$ -dirección seguida de un impulso por $c/2$ a lo largo del $y$ -y que el lado derecho representa un impulso de $\sqrt{7}c/4$ en la dirección $(2/\sqrt{7},\sqrt{3/7},0)$ seguido de una rotación alrededor del $z$ -eje por $\cos^{-1}(4\sqrt{3}/7)$ o $8.21$ grados.

Ayuda tener la fórmula para una matriz boost general que es

$$ \left( \begin{array}{cccc} \gamma & -\gamma \beta n_x & -\gamma \beta n_y & -\gamma \beta n_z \\ -\gamma \beta n_x & 1+(\gamma-1)n_x^2 & (\gamma-1)n_xn_y & (\gamma-1)n_xn_z \\ -\gamma \beta n_y & (\gamma-1)n_yn_x & 1+(\gamma-1)n_y^2 & (\gamma-1)n_yn_z \\ -\gamma \beta n_z & (\gamma-1)n_zn_x & (\gamma-1)n_zn_y & 1+(\gamma-1)n_z^2 \\ \end{array} \right). $$

Para obtener un Rotación de Wigner los dos impulsos no tienen por qué ser perpendiculares; sólo tienen que ser no colineales. Su composición también puede expresarse como una rotación seguida de un impulso, en lugar de como un impulso seguido de una rotación. Si expresas la composición de los potenciadores como una rotación seguida de un potenciador, la rotación resultante será la misma que antes, pero el potenciador resultante será diferente. Por ejemplo,

$$ \left( \begin{array}{cccc} \frac{2}{\sqrt{3}} & 0 & -\frac{1}{\sqrt{3}} & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{3}} & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) \left( \begin{array}{cccc} \frac{2}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & 0 & 0 \\ -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) = \left( \begin{array}{cccc} \frac{4}{3} & -\frac{1}{\sqrt{3}} & -\frac{2}{3} & 0 \\ -\frac{1}{\sqrt{3}} & \frac{8}{7} & \frac{2}{7 \sqrt{3}} & 0 \\ -\frac{2}{3} & \frac{2}{7 \sqrt{3}} & \frac{25}{21} & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) \left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \frac{4 \sqrt{3}}{7} & -\frac{1}{7} & 0 \\ 0 & \frac{1}{7} & \frac{4 \sqrt{3}}{7} & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) $$

Ahora la dirección de impulso es $(\sqrt{3/7},2/\sqrt{7},0)$ .

Si haces los dos refuerzos originales en el orden inverso, obtendrás resultados diferentes, ya que no se intercambian.

ADDENDUM: ¿Te preguntas cómo descomponer el producto de una transformación general de Lorentz en un impulso y una rotación? Véase esta pregunta relacionada .

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X