Aplicando las propiedades de los determinantes, tenemos:
$$\begin{vmatrix}aa_{11}+bb_{11} & aa_{12}+bb_{12}\\ aa_{21}+bb_{21}& aa_{22}+bb_{22}\end{vmatrix}- \begin{vmatrix}aa_{11} & aa_{12}\\ aa_{21}& aa_{22}\end{vmatrix}- \begin{vmatrix}bb_{11} & bb_{12}\\ bb_{21}& bb_{22}\end{vmatrix}$$
$$=\begin{vmatrix}aa_{11} & aa_{12}+bb_{12}\\ aa_{21}& aa_{22}+bb_{22}\end{vmatrix}+\begin{vmatrix}bb_{11} & aa_{12}+bb_{12}\\ bb_{21}& aa_{22}+bb_{22}\end{vmatrix}- \begin{vmatrix}aa_{11} & aa_{12}\\ aa_{21}& aa_{22}\end{vmatrix}- \begin{vmatrix}bb_{11} & bb_{12}\\ bb_{21}& bb_{22}\end{vmatrix}$$
$$=\begin{vmatrix}aa_{11} & aa_{12}\\ aa_{21}& aa_{22}\end{vmatrix}+\begin{vmatrix}aa_{11} & bb_{12}\\ aa_{21}& bb_{22}\end{vmatrix}+\begin{vmatrix}bb_{11} & aa_{12}\\ bb_{21}& aa_{22}\end{vmatrix}+\begin{vmatrix}bb_{11} & bb_{12}\\ bb_{21}& bb_{22}\end{vmatrix}- \begin{vmatrix}aa_{11} & aa_{12}\\ aa_{21}& aa_{22}\end{vmatrix}- \begin{vmatrix}bb_{11} & bb_{12}\\ bb_{21}& bb_{22}\end{vmatrix}$$
$$=\begin{vmatrix}aa_{11} & bb_{12}\\ aa_{21}& ba_{22}\end{vmatrix}+\begin{vmatrix}bb_{11} & bb_{12}\\ bb_{21}& ba_{22}\end{vmatrix}$$
$$=ab\left(\begin{vmatrix}a_{11} & b_{12}\\ a_{21}& b_{22}\end{vmatrix}+\begin{vmatrix}b_{11} & a_{12}\\ b_{21}& a_{22}\end{vmatrix}\right)$$
$$=ab\left(\begin{vmatrix}a_{11}+b_{11} & a_{12}+b_{12}\\ a_{21}+b_{21}& a_{22}+b_{22}\end{vmatrix}- \begin{vmatrix}a_{11} & a_{12}\\ a_{21}& a_{22}\end{vmatrix}- \begin{vmatrix}b_{11} & b_{12}\\ b_{21}& b_{22}\end{vmatrix}\right)$$