$\newcommand{\+}{^{\daga}}%
\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\down}{\downarrow}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\mitad}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}%
\newcommand{\cy}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
\begin{align}
I_{n} \equiv \int_{1}^{n}{\dd x \over \pars{x^{2} + 1}^{n}}&=
{n \over \pars{n^{2} + 1}^{n}}
- {1 \over 2^{n}} + 2n\int_{1}^{n}{x^{2} \over \pars{x^{2} + 1}^{n + 1}}\,\dd x
\\[3mm]&=
{n \over \pars{n^{2} + 1}^{n}}
- {1 \over 2^{n}} + 2nI_{n} - 2n\int_{1}^{n}{\dd x \over \pars{x^{2} + 1}^{n + 1}}
\end{align}
\begin{align}
I_{n} &=
{n \over \pars{1 - 2n}\pars{n^{2} + 1}^{n}}
+ \color{#00f}{{1 \over \pars{2n - 1}2^{n}}} + {2n \over 2n - 1}\,\bracks{%
I_{n + 1} - \int_{n}^{n + 1}{\dd x \over \pars{x^{2} + 1}^{n + 1}}
}
\end{align}
El $\color{#00f}{\large blue}$ uno es 'el líder término':
$$
{1 \over \pars{2n - 1}2^{n}} \sim {1 \over n2^{n + 1}} \sim
\color{#00f}{\large{1 \over n\,2^{n}}}
$$