Intersección con el plano $z = {z_0}$ : $$\begin{gathered} \sqrt {{x^2} + {y^2}} = {z_0} \hfill \\ {x^2} + {y^2} = {\left( {{z_0}} \right)^2} \hfill \\ x = {z_0}\cos (t) \hfill \\ y = {z_0}\sin (t) \hfill \\ \end{gathered}$$ Curva de intersección: $$c(t) = ({z_0}\cos (t),{z_0}\sin (t),{z_0})$$
Intersección con el plano $y = {y_0}$ : $$\begin{gathered} \sqrt {{x^2} + {{\left( {{y_0}} \right)}^2}} = z \hfill \\ {x^2} + {\left( {{y_0}} \right)^2} = {z^2} \hfill \\ {z^2} - {x^2} = {\left( {{y_0}} \right)^2} \hfill \\ x = {y_0}\sinh (t) \hfill \\ z = {y_0}\cosh (t) \hfill \\ \end{gathered}$$ Curva de intersección: $$c(t) = ({y_0}\sinh (t),{y_0},{y_0}\cosh (t))$$
Intersección con el plano $x = {x_0}$ : $$\begin{gathered} \sqrt {{{\left( {{x_0}} \right)}^2} + {y^2}} = z \hfill \\ {\left( {{x_0}} \right)^2} + {y^2} = {z^2} \hfill \\ {z^2} - {y^2} = {\left( {{x_0}} \right)^2} \hfill \\ y = {x_0}\sinh (t) \hfill \\ z = {x_0}\cosh (t) \hfill \\ \end{gathered}$$ Curva de intersección: $$c(t) = ({x_0},{x_0}\sinh (t),{x_0}\cosh (t))$$