19 votos

Acerca de $\int_0^{\pi/2}\arctan(1-\sin^2 (x) \cos^2 (x))dx = \pi \left( \frac{\pi}{4}-\pi \arctan \sqrt{\frac{\sqrt{2}-1}{2}}\right)$

En esta pregunta sos440 ha mencionado acerca de una integral que se calcula:

$$\int_0^{\pi/2}\arctan(1-\sin^2 (x) \cos^2 (x))dx = \pi \left( \frac{\pi}{4}- \arctan \sqrt{\frac{\sqrt{2}-1}{2}}\right)$$

Realmente me gustaría saber cómo puede ser demostrado. He intentado utilizar la diferenciación bajo el signo integral en parmeter $a$:

$$\int_0^{\pi/2}\arctan(1-a\sin^2 (x) \cos^2 (x))dx $$

pero en realidad no funciona. Estaría muy agradecido si sos440 o alguien me puede decir el secreto detrás de descubrimiento de esta fórmula.

Gracias!

27voto

Bhubhu Hbuhdbus Puntos 123

$$ \begin{aligned} \int_0^{\pi/2} \arctan\left(1-\cos^2x\sin^2x\right)\,dx & =\int_0^{\pi/2} \left(\frac{\pi}{2}-\arctan\left(\frac{1}{1-\sin^2x\cos^2x}\right)\right)\,dx \\ &=\frac{\pi^2}{4}-\int_0^{\pi/2} \arctan(\sin^2x)\,dx-\int_0^{\pi/2} \arctan(\cos^2x)\,dx \\ &=\frac{\pi^2}{4}-2\int_0^{\pi/2}\arctan(\cos^2x)\,dx \\ \end{aligned} $$

Considere la posibilidad de

$$I(a)=\int_0^{\pi/2} \arctan(a\,\cos^2x)\,dx $$

$$ \begin{aligned} \Rightarrow I'(a)&=\int_0^{\pi/2} \frac{\cos^2x}{1+a^2\cos^4x}\,dx \\ &= \int_0^{\pi/2} \frac{\sec^2x}{\sec^4x+a^2}\,dx\\ &= \int_0^{\pi/2} \frac{\sec^2x}{(1+\tan^2x)^2+a}\,dx\\ &=\int_0^{\infty} \frac{dt}{t^4+2t^2+a^2+1}\,\,\,\,\,\,\,(\tan x=t) \\ \end{aligned} $$

Con la sustitución de $t\mapsto \dfrac{\sqrt{a^2+1}}{t} $,

$$I'(a)=\frac{1}{\sqrt{a^2+1}}\int_0^{\infty} \frac{t^2}{t^4+2t^2+a^2+1}\,dt $$

$$ \begin{aligned} \Rightarrow I'(a) &=\frac{1}{2\sqrt{a^2+1}}\int_0^{\infty} \frac{\sqrt{a^2+1}+t^2}{t^4+2t^2+a^2+1}\,dt \\ &=\frac{1}{2\sqrt{a^2+1}}\int_0^{\infty} \frac{1+\frac{\sqrt{1+a^2}}{t^2}}{\left(t-\frac{\sqrt{a^2+1}}{t}\right)^2+2(1+\sqrt{a^2+1})}\,dt\\ &=\frac{1}{2\sqrt{a^2+1}}\int_{-\infty}^{\infty} \frac{dy}{y^2+2(1+\sqrt{a^2+1})}\,\,\,\,\,\,\,\left(t-\frac{\sqrt{a^2+1}}{t}=y\right) \\ &=\frac{\pi}{2\sqrt{2}} \frac{1}{\sqrt{1+a^2}\sqrt{1+\sqrt{a^2+1}}} \\ \end{aligned} $$

La integración de la espalda,

$$ \begin{aligned} I(1)-I(0)=I(1) &=\frac{\pi}{2\sqrt{2}}\int_0^1 \frac{da}{\sqrt{1+a^2}\sqrt{1+\sqrt{a^2+1}}} \\ &= \frac{\pi}{2\sqrt{2}}\int_1^{\sqrt{2}} \frac{dt}{\sqrt{t-1}(t+1)}\,\,\,\,\,\,\,(\sqrt{a^2+1}=t) \\ &=\frac{\pi}{\sqrt{2}}\int_0^{\sqrt{\sqrt{2}-1}} \frac{du}{u^2+2} \,\,\,\,\,\,\,(t-1=u^2) \\ &=\frac{\pi}{2} \left(\arctan\frac{u}{\sqrt{2}}\right|_0^{\sqrt{\sqrt{2}-1}} \\ &=\frac{\pi}{2}\arctan\left(\sqrt{\frac{\sqrt{2}-1}{2}}\right) \\ \end{aligned}$$

Por lo tanto,

$$\boxed{\displaystyle \int_0^{\pi/2} \arctan\left(1-\cos^2x\sin^2x\right)\,dx=\dfrac{\pi^2}{4}-\pi\arctan\left(\sqrt{\dfrac{\sqrt{2}-1}{2}}\right)}$$

17voto

psychotik Puntos 171

Siguiente Norbert del consejo, he eliminado mi comentario y la trasladó a una respuesta:

Complejo de análisis puede ayudar a: ver mi blog de la publicación.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X