1 votos

Definiciones equivalentes de la signatura de una matriz simétrica

Estoy intentando convencerme de que las dos definiciones siguientes de la signatura de una matriz simétrica son la misma. La primera dice que es el triple $(p,n,z)$ donde $p$ es el número de $1$ 's, $n$ es el número de $-1$ y $z$ es el número de $0$ en la forma normal de la matriz simétrica. La otra definición dice que es el triple $(p,n,z)$ donde $p$ , $n$ y $z$ son el número de valores propios positivos, negativos y nulos de la matriz, respectivamente.

Mi primera suposición fue que esto es obvio, ya que los elementos diagonales de la matriz $P^tAP$ donde $A$ es una matriz simétrica dada, que es la forma normal de $A$ son los valores propios. Pero ahora dudo de que sea cierto, porque esto es ciertamente cierto para $P^{-1}AP$ Sin embargo, la fuente que utilizo no afirma que la matriz $P$ que reduce $A$ a la forma normal deben ser ortogonales.

1voto

Stephan Aßmus Puntos 16

Esta misma cuestión se plantea una y otra vez. Para matrices simétricas sobre los reales, la relación de equivalencia que preserva todos los signos, como en la Ley de Inercia de Sylvester, es congruencia . Si $A$ y $B$ son simétricas reales, significa que existe una matriz invertible $Q$ tal que $$ Q^T A Q = B. $$

Dame un ejemplo de matriz simétrica $H$ con coeficientes enteros, pondré aquí cómo resolver $P^T HP = D$ diagonal. Para este problema, todos los números enteros, podemos disponer que $P$ tiene todas las entradas racionales, lo que significa que $D$ también lo hace, y $\det P = \pm 1.$ Las entradas diagonales de $D$ no serán los valores propios (que bien podrían ser irracionales)

He aquí un ejemplo con valores propios muy, muy feos: $$ H = \left( \begin{array}{rrrr} 8 & 11 & 4 & 3 \\ 11 & 12 & 4 & 7 \\ 4 & 4 & 7 & 12 \\ 3 & 7 & 12 & 17 \\ \end{array} \right) $$ $$ P^T H P = D $$ $$\left( \begin{array}{rrrr} 1 & 0 & 0 & 0 \\ - \frac{ 11 }{ 8 } & 1 & 0 & 0 \\ \frac{ 4 }{ 25 } & - \frac{ 12 }{ 25 } & 1 & 0 \\ - \frac{ 271 }{ 143 } & \frac{ 241 }{ 143 } & - \frac{ 228 }{ 143 } & 1 \\ \end{array} \right) \left( \begin{array}{rrrr} 8 & 11 & 4 & 3 \\ 11 & 12 & 4 & 7 \\ 4 & 4 & 7 & 12 \\ 3 & 7 & 12 & 17 \\ \end{array} \right) \left( \begin{array}{rrrr} 1 & - \frac{ 11 }{ 8 } & \frac{ 4 }{ 25 } & - \frac{ 271 }{ 143 } \\ 0 & 1 & - \frac{ 12 }{ 25 } & \frac{ 241 }{ 143 } \\ 0 & 0 & 1 & - \frac{ 228 }{ 143 } \\ 0 & 0 & 0 & 1 \\ \end{array} \right) = \left( \begin{array}{rrrr} 8 & 0 & 0 & 0 \\ 0 & - \frac{ 25 }{ 8 } & 0 & 0 \\ 0 & 0 & \frac{ 143 }{ 25 } & 0 \\ 0 & 0 & 0 & \frac{ 569 }{ 143 } \\ \end{array} \right) $$

Una vez alcanzada esta matriz diagonal $D,$ podemos seguir obteniendo sólo $0,1,-1$ en la diagonal tomando $R^T P^T H P R,$ donde

$$ R = R^T = \left( \begin{array}{rrrr} \frac{1}{\sqrt8} & 0 & 0 & 0 \\ 0 & \frac{ \sqrt 8 }{ 5 } & 0 & 0 \\ 0 & 0 & \frac{ 5 }{ \sqrt {143} } & 0 \\ 0 & 0 & 0 & \frac{ \sqrt {143} }{ \sqrt {569} } \\ \end{array} \right) $$

\=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

$$ D_0 = H $$ $$ E_j^T D_{j-1} E_j = D_j $$ $$ P_{j-1} E_j = P_j $$ $$ E_j^{-1} Q_{j-1} = Q_j $$ $$ P_j Q_j = I $$ $$ P_j^T H P_j = D_j $$ $$ Q_j^T D_j Q_j = H $$

$$ H = \left( \begin{array}{rrrr} 8 & 11 & 4 & 3 \\ 11 & 12 & 4 & 7 \\ 4 & 4 & 7 & 12 \\ 3 & 7 & 12 & 17 \\ \end{array} \right) $$

\==============================================

$$ E_{1} = \left( \begin{array}{rrrr} 1 & - \frac{ 11 }{ 8 } & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) $$ $$ P_{1} = \left( \begin{array}{rrrr} 1 & - \frac{ 11 }{ 8 } & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q_{1} = \left( \begin{array}{rrrr} 1 & \frac{ 11 }{ 8 } & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D_{1} = \left( \begin{array}{rrrr} 8 & 0 & 4 & 3 \\ 0 & - \frac{ 25 }{ 8 } & - \frac{ 3 }{ 2 } & \frac{ 23 }{ 8 } \\ 4 & - \frac{ 3 }{ 2 } & 7 & 12 \\ 3 & \frac{ 23 }{ 8 } & 12 & 17 \\ \end{array} \right) $$

\==============================================

$$ E_{2} = \left( \begin{array}{rrrr} 1 & 0 & - \frac{ 1 }{ 2 } & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) $$ $$ P_{2} = \left( \begin{array}{rrrr} 1 & - \frac{ 11 }{ 8 } & - \frac{ 1 }{ 2 } & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q_{2} = \left( \begin{array}{rrrr} 1 & \frac{ 11 }{ 8 } & \frac{ 1 }{ 2 } & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D_{2} = \left( \begin{array}{rrrr} 8 & 0 & 0 & 3 \\ 0 & - \frac{ 25 }{ 8 } & - \frac{ 3 }{ 2 } & \frac{ 23 }{ 8 } \\ 0 & - \frac{ 3 }{ 2 } & 5 & \frac{ 21 }{ 2 } \\ 3 & \frac{ 23 }{ 8 } & \frac{ 21 }{ 2 } & 17 \\ \end{array} \right) $$

\==============================================

$$ E_{3} = \left( \begin{array}{rrrr} 1 & 0 & 0 & - \frac{ 3 }{ 8 } \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) $$ $$ P_{3} = \left( \begin{array}{rrrr} 1 & - \frac{ 11 }{ 8 } & - \frac{ 1 }{ 2 } & - \frac{ 3 }{ 8 } \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q_{3} = \left( \begin{array}{rrrr} 1 & \frac{ 11 }{ 8 } & \frac{ 1 }{ 2 } & \frac{ 3 }{ 8 } \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D_{3} = \left( \begin{array}{rrrr} 8 & 0 & 0 & 0 \\ 0 & - \frac{ 25 }{ 8 } & - \frac{ 3 }{ 2 } & \frac{ 23 }{ 8 } \\ 0 & - \frac{ 3 }{ 2 } & 5 & \frac{ 21 }{ 2 } \\ 0 & \frac{ 23 }{ 8 } & \frac{ 21 }{ 2 } & \frac{ 127 }{ 8 } \\ \end{array} \right) $$

\==============================================

$$ E_{4} = \left( \begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & - \frac{ 12 }{ 25 } & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) $$ $$ P_{4} = \left( \begin{array}{rrrr} 1 & - \frac{ 11 }{ 8 } & \frac{ 4 }{ 25 } & - \frac{ 3 }{ 8 } \\ 0 & 1 & - \frac{ 12 }{ 25 } & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q_{4} = \left( \begin{array}{rrrr} 1 & \frac{ 11 }{ 8 } & \frac{ 1 }{ 2 } & \frac{ 3 }{ 8 } \\ 0 & 1 & \frac{ 12 }{ 25 } & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D_{4} = \left( \begin{array}{rrrr} 8 & 0 & 0 & 0 \\ 0 & - \frac{ 25 }{ 8 } & 0 & \frac{ 23 }{ 8 } \\ 0 & 0 & \frac{ 143 }{ 25 } & \frac{ 228 }{ 25 } \\ 0 & \frac{ 23 }{ 8 } & \frac{ 228 }{ 25 } & \frac{ 127 }{ 8 } \\ \end{array} \right) $$

\==============================================

$$ E_{5} = \left( \begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & \frac{ 23 }{ 25 } \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) $$ $$ P_{5} = \left( \begin{array}{rrrr} 1 & - \frac{ 11 }{ 8 } & \frac{ 4 }{ 25 } & - \frac{ 41 }{ 25 } \\ 0 & 1 & - \frac{ 12 }{ 25 } & \frac{ 23 }{ 25 } \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q_{5} = \left( \begin{array}{rrrr} 1 & \frac{ 11 }{ 8 } & \frac{ 1 }{ 2 } & \frac{ 3 }{ 8 } \\ 0 & 1 & \frac{ 12 }{ 25 } & - \frac{ 23 }{ 25 } \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D_{5} = \left( \begin{array}{rrrr} 8 & 0 & 0 & 0 \\ 0 & - \frac{ 25 }{ 8 } & 0 & 0 \\ 0 & 0 & \frac{ 143 }{ 25 } & \frac{ 228 }{ 25 } \\ 0 & 0 & \frac{ 228 }{ 25 } & \frac{ 463 }{ 25 } \\ \end{array} \right) $$

\==============================================

$$ E_{6} = \left( \begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & - \frac{ 228 }{ 143 } \\ 0 & 0 & 0 & 1 \\ \end{array} \right) $$ $$ P_{6} = \left( \begin{array}{rrrr} 1 & - \frac{ 11 }{ 8 } & \frac{ 4 }{ 25 } & - \frac{ 271 }{ 143 } \\ 0 & 1 & - \frac{ 12 }{ 25 } & \frac{ 241 }{ 143 } \\ 0 & 0 & 1 & - \frac{ 228 }{ 143 } \\ 0 & 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q_{6} = \left( \begin{array}{rrrr} 1 & \frac{ 11 }{ 8 } & \frac{ 1 }{ 2 } & \frac{ 3 }{ 8 } \\ 0 & 1 & \frac{ 12 }{ 25 } & - \frac{ 23 }{ 25 } \\ 0 & 0 & 1 & \frac{ 228 }{ 143 } \\ 0 & 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D_{6} = \left( \begin{array}{rrrr} 8 & 0 & 0 & 0 \\ 0 & - \frac{ 25 }{ 8 } & 0 & 0 \\ 0 & 0 & \frac{ 143 }{ 25 } & 0 \\ 0 & 0 & 0 & \frac{ 569 }{ 143 } \\ \end{array} \right) $$

\==============================================

$$ P^T H P = D $$ $$\left( \begin{array}{rrrr} 1 & 0 & 0 & 0 \\ - \frac{ 11 }{ 8 } & 1 & 0 & 0 \\ \frac{ 4 }{ 25 } & - \frac{ 12 }{ 25 } & 1 & 0 \\ - \frac{ 271 }{ 143 } & \frac{ 241 }{ 143 } & - \frac{ 228 }{ 143 } & 1 \\ \end{array} \right) \left( \begin{array}{rrrr} 8 & 11 & 4 & 3 \\ 11 & 12 & 4 & 7 \\ 4 & 4 & 7 & 12 \\ 3 & 7 & 12 & 17 \\ \end{array} \right) \left( \begin{array}{rrrr} 1 & - \frac{ 11 }{ 8 } & \frac{ 4 }{ 25 } & - \frac{ 271 }{ 143 } \\ 0 & 1 & - \frac{ 12 }{ 25 } & \frac{ 241 }{ 143 } \\ 0 & 0 & 1 & - \frac{ 228 }{ 143 } \\ 0 & 0 & 0 & 1 \\ \end{array} \right) = \left( \begin{array}{rrrr} 8 & 0 & 0 & 0 \\ 0 & - \frac{ 25 }{ 8 } & 0 & 0 \\ 0 & 0 & \frac{ 143 }{ 25 } & 0 \\ 0 & 0 & 0 & \frac{ 569 }{ 143 } \\ \end{array} \right) $$ $$ Q^T D Q = H $$ $$\left( \begin{array}{rrrr} 1 & 0 & 0 & 0 \\ \frac{ 11 }{ 8 } & 1 & 0 & 0 \\ \frac{ 1 }{ 2 } & \frac{ 12 }{ 25 } & 1 & 0 \\ \frac{ 3 }{ 8 } & - \frac{ 23 }{ 25 } & \frac{ 228 }{ 143 } & 1 \\ \end{array} \right) \left( \begin{array}{rrrr} 8 & 0 & 0 & 0 \\ 0 & - \frac{ 25 }{ 8 } & 0 & 0 \\ 0 & 0 & \frac{ 143 }{ 25 } & 0 \\ 0 & 0 & 0 & \frac{ 569 }{ 143 } \\ \end{array} \right) \left( \begin{array}{rrrr} 1 & \frac{ 11 }{ 8 } & \frac{ 1 }{ 2 } & \frac{ 3 }{ 8 } \\ 0 & 1 & \frac{ 12 }{ 25 } & - \frac{ 23 }{ 25 } \\ 0 & 0 & 1 & \frac{ 228 }{ 143 } \\ 0 & 0 & 0 & 1 \\ \end{array} \right) = \left( \begin{array}{rrrr} 8 & 11 & 4 & 3 \\ 11 & 12 & 4 & 7 \\ 4 & 4 & 7 & 12 \\ 3 & 7 & 12 & 17 \\ \end{array} \right) $$

\=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X