$$\sin { \left( ax \right) } \sin { \left( bx \right) =\left( \frac { { e }^{ aix }-{ e }^{ -aix } }{ 2i } \right) \left( \frac { { e }^{ bix }-{ e }^{ -bix } }{ 2i } \right) } =\frac { { e }^{ \left( a+b \right) ix }-e^{ \left( a-b \right) ix }-{ e }^{ \left( b-a \right) ix }+{ e }^{ -\left( a+b \right) ix } }{ -4 } \\ =-\frac { 1 }{ 2 } \left( \frac { { e }^{ \left( a+b \right) ix }+{ e }^{ -\left( a+b \right) ix } }{ 2 } -\frac { { e }^{ \left( a-b \right) ix }+{ e }^{ -\left( a-b \right) ix } }{ 2 } \right) =\frac { 1 }{ 2 } \left( \cos { \left( a-b \right) x-\cos { \left( a+b \right) x } } \right) $$
mismo método que se puede hacer con $\cos { \left( ax \right) \cos { \left( bx \right) } } $
Edita: $$\int { \sin { \left( ax \right) \sin { \left( bx \right) } } dx=\frac { 1 }{ 2 } \int { \left[ \cos { \left( a-b \right) x-\cos { \left( a+b \right) x } } \right] dx=\quad } } $$$$ \frac { 1 }{ 2 } \int { \cos { \left( a-b \right) xdx } } -\frac { 1 }{ 2 } \int { \cos { \left( a+b \right) xdx= } } $$
ahora para pedir calcular $\int { \cos { \left( a+b \right) xdx } } $ escriba a $$t=\left( a+b \right) x\quad \Rightarrow \quad x=\frac { t }{ a+b } \quad \Rightarrow dx=\frac { 1 }{ a+b } dt\\ \int { \cos { \left( a+b \right) xdx=\frac { 1 }{ a+b } \int { \cos { \left( t \right) } dt=\frac { 1 }{ a+b } \sin { \left( t \right) = } } \frac { 1 }{ a+b } \sin { \left( a+b \right) x } } } +C\\ $$