1 votos

Doble duda simplex (sin restricciones)

Tengo estos dos problemas y sólo quiero encontrar la forma dual:

$\begin{gather} max\hspace{.1cm}z =5x_1+6x_2\\ s.t\hspace{.1cm}x_1+2x_2=5\\ -x_1+5x_2 \ge 3\\ x_2 \ge 0\\ x_1\hspace{.1cm} unrestricted \end{gather}$

$\begin{gather} max\hspace{.1cm}z =x_1+x_2\\ s.t\hspace{.1cm}2x_1+x_2=5\\ 3x_1-x_2 =6\\ x_1, x_2 \hspace{.1cm}unrestricted \end{gather}$

Entonces, en forma dual tengo esto:

$\begin{gather} min\hspace{.1cm}z' =5y_1-3y_2\\ s.t\hspace{.1cm}y_1+3y_2\ge 5\\ -2y_1-5y_2 \ge 6\\ y_2 \ge 0\\ \end{gather}$

$\begin{gather} min\hspace{.1cm}z' =5y_1+6y_2\\ s.t\hspace{.1cm}2y_1+3y_2\ge 1\\ y_1-y_2 \ge 1\\ \end{gather}$

Pero no sé cómo crear restricciones en variables no restringidas

1voto

callculus Puntos 6878

He diseñado los problemas duales según la tabla adjunta.

Primer problema dual

$\begin{gather} \color{blue}{min}\hspace{.1cm} \ 5y_1+3y_2\\ s.t.\hspace{.1cm} \ \ y_1-y_2= 5\\ \ \ 2y_1+5y_2 \ge 6\\ y_1 \ \text{free}, \ y_2 \le 0 \end{gather}$

Segundo problema dual

$\begin{gather} \color{blue}{min}\hspace{.1cm} \ 5y_1+6y_2\\ s.t.\hspace{.1cm} \ \ 2y_1+3y_2 = 1\\ y_1-y_2 = 1 \\y_1,y_2 \ \text{free}\\ \end{gather}$

Si tiene alguna pregunta sobre las fórmulas duales o la tabla, no dude en consultarnos.

enter image description here

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X