Sea $B_{t}$ sea el movimiento browniano estándar en el conjunto $W_{t}=\frac{1}{c}B_{c^2t}$ . Las distribuciones dimensonales finitas de $W_{t}$ son,
$P(W_{t_{1}}\in (-\infty,x_{1}], \ldots W_{t_{n}}\in (-\infty,x_{n}])=P(\frac{1}{c}B_{c^2t_{1}}\in (-\infty,x_{1}], \ldots \frac{1}{c}B_{c^2t_{n}}\in (-\infty,x_{n}])=P(B_{c^2t_{1}}\in (-\infty,cx_{1}], \ldots ,B_{c^2t_{n}}\in (-\infty,cx_{n}])= $
$\int_{(-\infty,cx_{1}]\times (-\infty,cx_{n}]}\prod\frac{1}{\sqrt{2\pi c^2 (t_{i+1}-t_{i})}}e^{-\frac{x^2}{2c^2t^2}}\cdots e^{-\frac{x^2}{2c^2(t_{n}-t_{n-1})^2}}dx_{1} \ldots dx_{n}=$
$\int_{(-\infty,x_{1}]\times (-\infty,x_{n}]}\prod\frac{1}{\sqrt{2\pi c^2 (t_{i+1}-t_{i})}}e^{-\frac{c^2x^2}{2c^2t^2}}\cdots e^{-\frac{c^2x^2}{2c^2(t_{n}-t_{n-1})^2}}dx_{1} \ldots dx_{n}=$
$\int_{(-\infty,x_{1}]\times (-\infty,x_{n}]}\prod\frac{1}{\sqrt{2\pi c^2 (t_{i+1}-t_{i})}}e^{-\frac{x^2}{2t^2}}\cdots e^{-\frac{x^2}{2(t_{n}-t_{n-1})^2}}dx_{1} \ldots dx_{n}=\frac{1}{C}P(B_{t_{1}}\in (-\infty,x_{1}], \ldots B_{t_{n}}\in (-\infty,x_{n}])$ .
Así pues, parece que difiero en una constante $\frac{1}{C}$ ¿Alguien sabe dónde me equivoco?