Por tu descripción, parece tener mucho sentido: no sólo puedes calcular la curva ROC media, sino también la varianza en torno a ella para construir intervalos de confianza. Esto debería darte una idea de lo estable que es tu modelo.
Por ejemplo, así:
Aquí pongo las curvas ROC individuales, así como la curva media y los intervalos de confianza. Hay zonas en las que las curvas coinciden, por lo que tenemos menos varianza, y hay zonas en las que discrepan.
Para CV repetidos, basta con repetirlo varias veces y obtener la media total de todos los pliegues individuales:
Es bastante similar a la imagen anterior, pero proporciona estimaciones más estables (es decir, fiables) de la media y la varianza.
Aquí está el código para obtener la trama:
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_classification
from sklearn.cross_validation import KFold
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_curve
X, y = make_classification(n_samples=500, random_state=100, flip_y=0.3)
kf = KFold(n=len(y), n_folds=10)
tprs = []
base_fpr = np.linspace(0, 1, 101)
plt.figure(figsize=(5, 5))
plt.axes().set_aspect('equal', 'datalim')
for i, (train, test) in enumerate(kf):
model = LogisticRegression().fit(X[train], y[train])
y_score = model.predict_proba(X[test])
fpr, tpr, _ = roc_curve(y[test], y_score[:, 1])
plt.plot(fpr, tpr, 'b', alpha=0.15)
tpr = np.interp(base_fpr, fpr, tpr)
tpr[0] = 0.0
tprs.append(tpr)
tprs = np.array(tprs)
mean_tprs = tprs.mean(axis=0)
std = tprs.std(axis=0)
tprs_upper = np.minimum(mean_tprs + std, 1)
tprs_lower = mean_tprs - std
plt.plot(base_fpr, mean_tprs, 'b')
plt.fill_between(base_fpr, tprs_lower, tprs_upper, color='grey', alpha=0.3)
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([-0.01, 1.01])
plt.ylim([-0.01, 1.01])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
Para CV repetidos:
idx = np.arange(0, len(y))
for j in np.random.randint(0, high=10000, size=10):
np.random.shuffle(idx)
kf = KFold(n=len(y), n_folds=10, random_state=j)
for i, (train, test) in enumerate(kf):
model = LogisticRegression().fit(X[idx][train], y[idx][train])
y_score = model.predict_proba(X[idx][test])
fpr, tpr, _ = roc_curve(y[idx][test], y_score[:, 1])
plt.plot(fpr, tpr, 'b', alpha=0.05)
tpr = interp(base_fpr, fpr, tpr)
tpr[0] = 0.0
tprs.append(tpr)
Fuente de inspiración: http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html