¿Cómo convertir esta integral en función Beta Gamma?
Agradeceremos cualquier sugerencia. $$\int_0^{b} x \sqrt{b^3-x^3} dx$$ Gracias
¿Cómo convertir esta integral en función Beta Gamma?
Agradeceremos cualquier sugerencia. $$\int_0^{b} x \sqrt{b^3-x^3} dx$$ Gracias
Establecer $x =bt$ para que, $dx =bdt$ $$I:=\int_0^{b} x \sqrt{b^3-x^3} dx = \int_0^{1} b^2t \sqrt{b^3-b^3t^3} dt = b^{7/2}\int_0^{1} t (1-t^3)^{1/2} dt$$ Configuración $u=t^3$ Es decir $t= u^{1/3}$ produce $dt =\frac{1}{3}u^{-2/3}du~$ por lo tanto,
$$I= b^{7/2}\int_0^{1} t (1-t^3)^{1/2} dt = \frac{1}{3}b^{7/2}\int_0^{1} u^{-1/3} (1-u)^{1/2} du\\=\frac{1}{3}b^{7/2}\int_0^{1} u^{2/3-1} (1-u)^{3/2-1} du\\=\frac{1}{3}b^{7/2} B\left(\frac{2}{3},\frac{3}{2}\right)$$
Pero
$$B\left(\frac{2}{3},\frac{3}{2}\right) = \frac{\Gamma\left(\frac{2}{3}\right)\Gamma\left(\frac{3}{2}\right)}{\Gamma\left(\frac{2}{3}+\frac{3}{2}\right)} =\frac{\Gamma\left(\frac{2}{3}\right)\Gamma\left(1+\frac{1}{2}\right)}{\Gamma\left(2+\frac{1}{6}\right)}=\frac{\frac{1}{2}\Gamma\left(\frac{2}{3}\right)\Gamma\left(\frac{1}{2}\right)}{(1+\frac{1}{6})\frac{1}{6}\Gamma\left(\frac{1}{6}\right)}\\= \color{red}{\sqrt{\pi}}\frac{18}{7}\frac{\Gamma\left(\frac{2}{3}\right)}{\Gamma\left(\frac{1}{6}\right)}$$ Desde $$\Gamma\left(\frac{1}{2}\right) =\sqrt{\pi}$$
Conclusión $$\color{blue}{\int_0^{b} x \sqrt{b^3-x^3} dx =\color{red}{\sqrt{\pi}}b^{\frac{7}{2}}\frac{6}{7}\frac{\Gamma\left(\frac{2}{3}\right)}{\Gamma\left(\frac{1}{6}\right)} }$$
observe que un cambio de variable $x=by$ tirará $b$ de la integral (tanto del integrando como de los límites).
entonces observe que el cambio de variable $z=y^3$ dejará que el binomio $1-z$ aparecen bajo el radical, mientras que otro(s) factor(es) serán potencias de $y$ que conduce directamente a una integral Beta.
$$\int _0^b x\sqrt{b^3-x^3}dx=b^{7/2}\int _0^1 y\sqrt{1-y^3} dy=\frac13b^{7/2}\int _0^1 z^{-1/3}\sqrt{1-z}\, dz.$$
I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.