Buscando una prueba de que para el primitivo ternas Pitagóricas, la hipotenusa nunca es divisible por tres.
A continuación se muestra una lista de todas las ternas Pitagóricas primitivas con un hipotenusas menos de 300. Ninguno es divisible por 3.
(3, 4, 5) (5, 12, 13) (8, 15, 17) (7, 24, 25) (20, 21, 29) (12, 35, 37) (9, 40, 41) (28, 45, 53) (11, 60, 61) (16, 63, 65) (33, 56, 65) (48, 55, 73) (13, 84, 85) (36, 77, 85) (39, 80, 89) (65, 72, 97) (20, 99, 101) (60, 91, 109) (15, 112, 113) (44, 117, 125) (88, 105, 137) (17, 144, 145) (24, 143, 145) (51, 140, 149) (85, 132, 157) (119, 120, 169) (52, 165, 173) (19, 180, 181) (57, 176, 185) (104, 153, 185) (95, 168, 193) (28, 195, 197) (84, 187, 205) (133, 156, 205) (21, 220, 221) (140, 171, 221) (60, 221, 229) (105, 208, 233) (120, 209, 241) (32, 255, 257) (23, 264, 265) (96, 247, 265) (69, 260, 269) (115, 252, 277) (160, 231, 281) (161, 240, 289) (68, 285, 293)
Así que la pregunta es: ¿es esto cierto para todas las ternas Pitagóricas primitivas?
Cualquier ayuda sería muy apreciada.