Sea $\phi_1(t) = \int_{-\infty}^{t}\mathrm{G}_{1} \mathrm{e}^{-\left(t-t^{\prime}\right) / \lambda_{1}} \dot{\gamma}\left(\mathrm{t}^{\prime}\right) \mathrm{dt}^{\prime}$ y $ \phi_2(t) = \int_{-\infty}^{t}\mathrm{G}_{2} \mathrm{e}^{-\left(t-t^{\prime}\right) / \lambda_{2}} \dot{\gamma}\left(\mathrm{t}^{\prime}\right) \mathrm{dt}^{\prime}$ .
Utilizando la regla de Leibniz $\frac{\partial }{\partial t} \int_{-\infty}^t f(t,t') \, dt' =f(t,t) + \int_{-\infty}^t \frac{\partial }{\partial t}f(t,t') \, dt'$ obtenemos para $j = 1,2$ ,
$$\frac{\partial \phi_j}{\partial t} = G_j\dot{\gamma}\left(\mathrm{t}\right)- \frac{1}{\lambda_j}\phi_j(t),\quad \frac{\partial^2 \phi_j}{\partial t^2} = G_j \frac{\partial \dot{\gamma}}{\partial t} + \frac{1}{\lambda_j^2}\phi_j(t)$$
Así,
$$\tau = \phi_1 + \phi_2 ,\\\frac{\partial \tau}{\partial t} = \frac{\partial \phi_1}{\partial t}+ \frac{\partial \phi_2}{\partial t} = G_1\dot{\gamma}+ G_2 \dot{\gamma} - \frac{\phi_1}{\lambda_1} - \frac{\phi_2}{\lambda_2},$$
y $$\frac{\partial^2 \tau}{\partial t^2} = \frac{\partial^2 \phi_1}{\partial t^2}+ \frac{\partial \phi_2^2}{\partial t^2} = G_1\frac{\partial \dot{\gamma}}{\partial t}+ G_2\frac{\partial \dot{\gamma}}{\partial t } - \frac{1}{\lambda_1}\frac{\partial \phi_1}{\partial t} - \frac{1}{\lambda_2}\frac{\partial \phi_2}{\partial t} = \\G_1\frac{\partial \dot{\gamma}}{\partial t}+ G_2\frac{\partial \dot{\gamma}}{\partial t } - \frac{G_1 \dot{\gamma}}{\lambda_1}+ \frac{\phi_1}{\lambda_1^2}- \frac{G_2 \dot{\gamma}}{\lambda_2}+ \frac{\phi_2}{\lambda_2^2}$$
Entonces tenemos
$$(\lambda_1+ \lambda_2)\frac{\partial \tau}{\partial t} = -(\phi_1 + \phi_2) - \frac{\lambda_2}{\lambda_1} \phi_1 - \frac{\lambda_1}{\lambda_2} \phi_2 + (\lambda_1+\lambda_2)(G_1+G_2)\dot{\gamma} ,\\\lambda_1 \lambda_2 \frac{\partial^2 \tau}{\partial t^2} = \lambda_1\lambda_2(G_1 + G_2)\frac{\partial \dot{\gamma}}{\partial t } + \frac{\lambda_2}{\lambda_1} \phi_1 + \frac{\lambda_1}{\lambda_2} \phi_2- \lambda_2G_1 \dot{\gamma} - \lambda_1G_2 \dot{\gamma}$$
Sumando términos, obtenemos $$ \tau + (\lambda_1+ \lambda_2)\frac{\partial \tau}{\partial t}+ \lambda_1 \lambda_2 \frac{\partial^2 \tau}{\partial t^2} \\= (\lambda_1 G_1+ \lambda_1G_2 + \lambda_2G_1 + \lambda_2 G_2) \dot{\gamma} - (\lambda_2G_1 + \lambda_1 G_2) \dot{\gamma} + (\lambda_2 \lambda_1 G_1 + \lambda_1 \lambda_2 G_2) \frac{\partial \dot{\gamma}}{\partial t} \\ = (\lambda_1G_1+ \lambda_2 G_2) \dot{\gamma} + (\lambda_2 \lambda_1 G_1 + \lambda_1 \lambda_2 G_2) \frac{\partial \dot{\gamma}}{\partial t}\\ = (\eta_1 + \eta_2) \dot{\gamma} + (\lambda_2 \eta_1 + \lambda_1 \eta_2)\frac{\partial \dot{\gamma}}{\partial t} = (\eta_1 + \eta_2) \left[\dot{\gamma} + \frac{\lambda_2 \eta_1 + \lambda_1 \eta_2}{\eta_1+ \eta_2}\frac{\partial \dot{\gamma}}{\partial t}\right]$$