Bueno, la integral sobre $(0,2\pi)$ es claramente cero por simetría, por lo que el problema dado es equivalente a encontrar
$$ -\int_{0}^{\pi/2}\arctan\left(\frac{1}{2\sin x}\right)\,dx=-\int_{0}^{1}\frac{\arctan\frac{1}{2x}}{\sqrt{1-x^2}}\,dx=-\frac{\pi^2}{4}+\int_{0}^{1}\frac{\arctan(2x)}{\sqrt{1-x^2}}\,dx $$ o $$ -\frac{\pi^2}{4}+\int_{0}^{2}\int_{0}^{1}\frac{x}{(1+a^2 x^2)\sqrt{1-x^2}}\,dx\,da=-\frac{\pi^2}{4}+\int_{0}^{2}\frac{\text{arcsinh}(a)}{a\sqrt{1+a^2}}\,da$$ o $$ -\frac{\pi^2}{4}+\int_{0}^{\log(2+\sqrt{5})}\frac{u}{\sinh u}\,du =-\frac{\pi^2}{4}+\int_{1}^{2+\sqrt{5}}\frac{2\log v}{v^2-1}\,dv$$ donde la última integral depende del dilogaritmo $\text{Li}_2$ evaluado en $\pm(\sqrt{5}-2)$ :
$$ \int_{0}^{\pi/2}\arctan\left(\frac{1}{2\sin x}\right)\,dx= \text{arcsinh}\left(\tfrac{1}{2}\right)\text{arcsinh}(2)-\text{Li}_2(\sqrt{5}-2)+\text{Li}_2(2-\sqrt{5})$$