Fíjate, dejas que $$x=\frac{3}{5}\sin \theta\implies \theta=\sin^{-1}\left(\frac{5x}{3}\right)$$ entonces
límite superior en $x=0.6$ : $\theta=\sin^{-1}\left(\frac{5\times 0.6}{3}\right)=\sin^{-1}\left(1\right)=\frac{\pi}{2}$
límite inferior en $x=0$ : $\theta=\sin^{-1}\left(\frac{5\times 0}{3}\right)=\sin^{-1}\left(0\right)=0$
tras la sustitución, obtenemos
$$\int_{0}^{0.6}\frac{x^2}{\sqrt{9-25x^2}}\ dx=\int_{0}^{\pi/2}\frac{\left(\frac{3}{5}\sin\theta\right)^2}{\sqrt{9-9\sin^2\theta}}\frac{3}{5}\cos\theta\ d\theta$$ $$=\frac{9}{25}\cdot \frac{3}{5}\cdot \frac{1}{3}\int_{0}^{\pi/2}\frac{\sin^2\theta\cos \theta d\theta}{\sqrt{\cos^2\theta}}$$
$$=\frac{9}{125}\int_{0}^{\pi/2}\frac{\sin^2\theta\cos \theta d\theta}{|\cos\theta|}$$ sabemos $|\cos\theta|=\cos \theta\ \ \forall \ \ 0\le \theta \le\pi/2$ $$=\frac{9}{125}\int_{0}^{\pi/2}\frac{\sin^2\theta\cos \theta d\theta}{\cos\theta}$$ $$=\frac{9}{125}\int_{0}^{\pi/2}\sin^2\theta\ d\theta$$