$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\on}[1]{\operatorname{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ Con $\ds{m \in \braces{\pm 1,\,\pm 3,\,\pm 5,\ldots}}$ : \begin{align} &\bbox[5px,#ffd]{\int_{0}^{1} {\expo{1/\ln\pars{x}} \over x^{1/5}\,\,\bracks{\vphantom{\large A}\ln\pars{x}}^{1/5}}\,\dd x} = \int_{0}^{1} {\expo{1/\ln\pars{x}} \over x^{1/5}\,\,\bracks{\vphantom{\large A}\expo{m\pi\ic}\verts{\ln\pars{x}}}^{1/5}}\,\dd x \end{align} Vamos a $\ds{x \equiv \expo{-1/t} \iff t = -\,{1 \over \ln\pars{x}}}$ : \begin{align} &\bbox[5px,#ffd]{\int_{0}^{1} {\expo{1/\ln\pars{x}} \over x^{1/5}\,\,\bracks{\vphantom{\large A}\ln\pars{x}}^{1/5}}\,\dd x} \\[5mm] = &\ \expo{-m\pi\ic/5}\int_{0}^{\infty} {\expo{-t} \over \expo{-1/\pars{5t}}\,\,t^{-1/5}}\, \pars{\expo{-1/t}\,{1 \over t^{2}}\,\dd t} \\[5mm] = &\ \expo{-m\pi\ic/5}\int_{0}^{\infty}t^{-9/5}\,\, \exp\pars{-t - {4 \over 5}\,t}\,\dd t \\[5mm] = & \expo{-m\pi\ic/5} \bracks{50^{1/5}\,\on{K}_{4/5}\pars{4\root{5} \over 5}} \label{1}\tag{1} \end{align}
donde $\ds{\on{K}_{\nu}}$ es un Función de Bessel modificada . En último resultado es de DLMF .
Desde $\ds{\quad 50^{1/5}\,\on{K}_{4/5}\pars{4\root{5} \over 5} \approx 0.3740}$ El $\ds{\underline{\mbox{initial integral value}}}$ es $$ \approx 0.302595 + 0.219848\ic $$ cuando $\ds{m = \pm 1}$ además, por supuesto, de otros valores que se derivan de la $\ds{\expo{-m\pi\ic/5}}$ periodicidad.
El resultado final, que coincide con $\ds{\tt Mathematica}$ viene dada por \begin{align} &\bbox[5px,#ffd]{\int_{0}^{1} {\expo{1/\ln\pars{x}} \over x^{1/5}\,\,\bracks{\vphantom{\large A}\ln\pars{x}}^{1/5}}\,\dd x} = \expo{\pi\ic/5} \bracks{50^{1/5}\,\on{K}_{4/5}\pars{4\root{5} \over 5}} \\[5mm] = & \pars{{1 + \root{5} \over 4} + \root{5 - \root{5} \over 8}\ic}50^{1/5} \,\on{K}_{4/5}\pars{4\root{5} \over 5} \\[5mm] \approx &\ \bbx{0.302595 + 0.219848\,\ic} \\ & \end{align}