Encuentre $$\lim_{n\rightarrow \infty }\left ( \frac{1}{n} + \frac{e^{\frac{1}{n}}}{n} + \frac{e^{\frac{2}{n}}}{n} + \frac{e^{\frac{3}{n}}}{n}+.....+ \frac{e^{\frac{n-1}{n}}}{n}\right ).$$
Resolviendo un poco y aplicando GP, obtuve
$\left ( e-1 \right )\lim_{n\rightarrow \infty } \frac{1}{n.\left ( e^{\frac{1}{n}} -1 \right )}$
Ahora, el límite da la expresión como
$\left ( e-1 \right )\lim_{n\rightarrow \infty } \frac{1}{\infty *0}$
¿Cómo lo encuentro ahora? ¿Debo utilizar el $\frac{0}{0}$ ¿Forma?