1 votos

Si $y\sim u(x,1)$ ¿Cuál es la derivada? $\frac{dy}{dx}$ ?

Me refiero a cuando una función $f(y)=y$ y $y$ se distribuye uniformemente en el intervalo $(x,1)$ ¿cuál será la derivada $\frac{df}{dx}$ ¿ser como?

1voto

Ben Puntos 236

En este caso, la variable aleatoria $y$ tiene un distribución que es función de $x$ pero la función $f$ no es función de $x$ así que..:

$$\frac{df}{dx}(y) = 0.$$

(Tenga en cuenta que si tuviera que escribir una declaración de probabilidad sobre $f(y)$ entonces que declaración de probabilidad sería una función de $x$ y entonces obtendrías una respuesta no trivial).

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X