$\newcommand{\+}{^{\daga}}%
\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\down}{\downarrow}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\mitad}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}%
\newcommand{\cy}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
Vamos a $p_{-}$ $p_{+}$ la probabilidad de una bacteria muere o se divide en dos bacterias, respectivamente. La probabilidad de una bacteria que genera $n$ bacterias se
$$P_{n} = p_{-}\delta_{n,0}\ +\ p_{+}\delta_{n,2}\tag{1}$$
Dada una población de $N$ bacterias vamos a calcular la probabilidad de
${\cal P}_{N \to N'}$ de la población será de $N'$. ${\cal P}_{N \to N'}$ está dada por:
\begin{align}
{\cal P}_{N \to N'}&=\sum_{n_{1}=0}^{\infty}P_{n_{1}}\ldots
\sum_{n_{N}=0}^{\infty}P_{n_{N}}\,\delta_{n_{1} + \cdots + n_{N},N'}
\\[3mm]&=\sum_{n_{1}=0}^{\infty}P_{n_{1}}\ldots\sum_{n_{N}=0}^{\infty}P_{n_{N}}\
\overbrace{\int_{\verts{z} = 1}{1 \over z^{-n_{1} - \cdots - n_{N} + N' + 1}}
\,{\dd z \over 2\pi\ic}}^{\ds{\delta_{n_{1} + \cdots + n_{N},N'}}}
\\[3mm]&=\int_{\verts{z} =1}\pars{\sum_{n = 0}^{\infty}P_{n}z^{n}}^{N}\,
{1 \over z^{N' + 1}}\,{\dd z \over 2\pi\ic}
=\int_{\verts{z} =1}\pars{p_{-} + p_{+}z^{2}}^{N}\,{1 \over z^{N' + 1}}
\,{\dd z \over 2\pi\ic}
\end{align}
donde hemos utilizado la expresión $\pars{1}$.
\begin{align}
{\cal P}_{N \to N'}&=
\int_{\verts{z} = 1}\sum_{\ell = 0}^{N}
{N \choose \ell}p_{-}^{N - \ell}\pars{p_{+}z^{2}}^{\ell}\,{1 \over z^{N' + 1}}
\,{\dd z \over 2\pi\ic}
\\[3mm]&=\sum_{\ell = 0}^{N}{N \choose \ell}p_{-}^{N -\ell}p_{+}^{\ell}\
\overbrace{\int_{\verts{z} = 1}{1 \over z^{N' + 1 - 2\ell}}\,{\dd z \over 2\pi\ic}}
^{\ds{\delta_{2\ell,N'}}}\tag{2}
\end{align}
A partir de la expresión de $\pars{2}$ llegamos a la conclusión de:
$$
{\cal P}_{N \N'}
=\left\lbrace%
\begin{array}{lcl}
{N \choose N'/2}p_{-}^{N - N'/2}\ p_{+}^{N'/2}
& \mbox{if} & N'\ \mbox{is even and}\ 0 \leq N' \leq 2N
\\[2mm]
0, &&\mbox{otherwise}
\end{array}\right.
$$
Para el presente pregunta
$$
p_{-}^{N - N'/2}\ p_{+}^{N'/2}
=
\pars{1 \over 3}^{N - N'/2}\pars{2 \más de 3}^{N'/2} = {2^{N'/2} \más de 3^{N}}
$$
$$\color{#00f}{\large%
{\cal P}_{N \N'}
=\left\lbrace%
\begin{array}{lcl}
{1 \over 3^{N}}\,{N \choose N'/2}2^{N'/2}
& \mbox{if} & N'\ \mbox{is even and}\ 0 \leq N' \leq 2N
\\[2mm]
0, &&\mbox{otherwise}
\end{array}\right.}
$$
Con esta expresión para ${\cal P}_{N \to N'}$ podemos responder a muchas preguntas acerca de la población de bacterias.