$\newcommand{\+}{^{\daga}}%
\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\mitad}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}%
\newcommand{\cy}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
Al $n \gg 1$ la principal contribución a la integral viene de $x \sim 1$. A continuación, se establece el cambio de las variables de $x = 1 -\epsilon$:
\begin{align}
\color{#0000ff}{\large a_{n}} &= \int_{0}^{1}{nx^{n - 1} \over 1 + x}\,\dd x
=
\half\,n\int_{0}^{1}{\pars{1 - \epsilon}^{n - 1} \over 1 - \epsilon/2}\,\dd\epsilon
\\[3mm]&=
\half\,n\int_{0}^{1}\exp\pars{\bracks{n - 1}\ln\pars{1 - \epsilon} - \ln\pars{1 - {\epsilon \over 2}}}\,\dd\epsilon\quad
{\Large\stackrel{n \gg 1}{\sim}}\quad
\half\,n\int_{0}^{\infty}\exp\pars{-\bracks{n - {3 \over 2}}\epsilon}\,\dd\epsilon
\\[3mm]&=
\half\,{n \over n - 3/2}\quad \color{#0000ff}{\large\stackrel{n \to \infty}{\Huge \to} \quad\half}
\end{align}