Una forma cerrada menos intimidante es: $$\frac5{12}\rho^2-\frac{\pi}{36\sqrt 3}-\frac{\sqrt 3}{18}\tan^{-1}\left(\frac{\rho^2+1}{3}\right)-\frac1{36}\ln\left(1+\frac{3\rho}{(\rho-1)^2}\right)$$ donde $\rho=2^{1/3}$.
Agregaré la demostración pronto.
Prueba:
Multiplicando el numerador y el denominador por $(1+x)^{2/3}-(1-x^2)^{1/2}+(1-x)^{2/3}$,
$$\begin{align} I&=\frac12\int^1_0 x^{1/3}\left[(1+x)^{2/3}-(1-x^2)^{1/3}+(1-x)^{2/3}\right]dx \\ 2I&=\underbrace{\int^1_0 x^{1/3}(1+x)^{2/3} dx}_{A}-\underbrace{\int^1_0 x^{1/3}(1-x^2)^{1/3} dx}_{B}+\underbrace{\int^1_0 x^{1/3}(1-x)^{2/3} dx}_{C} \\ 2I&=A-B+C \end{align} $$
Sea $\rho=2^{1/3}$. $$\begin{align} A&=\int^1_0 x^{1/3}(1+x)^{2/3} dx \\ &=\int^{1/2}_0\frac{w^{1/3}}{(1-w)^3}dw \qquad x=\frac{w}{1-w}\\ &=3\int^\rho_0\frac{y^3}{(1-y^3)^3}dy \end{align} $$
La calculadora integral dice $$A=\frac56\rho^2+\frac{\pi}{18\sqrt 3}-\frac{\sqrt 3}{9}\tan^{-1}\left(\frac{\rho^2+1}{3}\right)-\frac1{18}\ln\left(1+\frac{3\rho}{(\rho-1)^2}\right)$$
$$\begin{align} B&=\int^1_0 x^{1/3}(1-x^2)^{1/3} dx \\ &=\frac12\int^1_0 y^{-1/3}(1-y)^{1/3}dy \qquad y=x^2 \\ &=\frac12\mathcal B\left(\frac23,\frac43\right) \\ &=\frac12\frac{\Gamma(\frac23)\Gamma(\frac43)}{\Gamma(2)} \\ &=\frac12\frac13\Gamma\left(\frac23\right)\Gamma\left(\frac13\right) \\ &=\frac16\frac{\pi}{\sin(\frac{\pi}3)} \\ &=\frac{\pi}{3\sqrt3} \end{align} $$
De manera similar,
$$\begin{align} C&=\int^1_0 x^{1/3}(1-x)^{2/3} dx \\ &=\frac12\mathcal B\left(\frac43,\frac53\right) \\ &=\frac12\frac{\Gamma(\frac43)\Gamma(\frac53)}{\Gamma(3)} \\ &=\frac12\frac13\frac23\Gamma\left(\frac23\right)\Gamma\left(\frac13\right) \\ &=\frac19\frac{\pi}{\sin(\frac{\pi}3)} \\ &=\frac{2\pi}{9\sqrt3} \end{align} $$
Por lo tanto, $$I=\frac5{12}\rho^2-\frac{\pi}{36\sqrt 3}-\frac{\sqrt 3}{18}\tan^{-1}\left(\frac{\rho^2+1}{3}\right)-\frac1{36}\ln\left(1+\frac{3\rho}{(\rho-1)^2}\right)$$ lo cual es aproximadamente $0.43027$.