1 votos

Volumen del cilindro entre planos

Calcular el volumen en el interior del cilindro $x^2+4y^2=4$ y entre los dos planos $z=12-3x-4y$ y $z=1$ .

La conversión a coordenadas cilíndricas da $$r^2\cos^2\theta +4r^2\sin^2\theta=4\\ z=12-3r\cos\theta-4r\sin\theta\\ z=1$$ .

$r$ va de $0$ a $1$ y $2$ . ¿Puedo utilizar $0\le r\le 1.5$ ?

$0\le \theta \le 2\pi$

$1\le z \le 12-3r\cos\theta-4r\sin\theta$

$$\int_{0}^{2\pi}\int_{0}^{1.5}\int_{1}^{12-3r\cos\theta-4r\sin\theta} rdzdrd\theta $$

¿Qué he hecho mal?

2voto

Shubham Johri Puntos 692
  • $z=12-3x-4y\implies z=12-3\color{red}{r\cos\theta}-4\color{blue}{r\sin\theta}$ .
  • Tenga en cuenta que el área sobre la que realiza la integración no es un círculo (es una elipse), por lo que no podrá mantener límites constantes para $r$ . El límite superior de $r$ depende de $\theta$ para $\theta=0,r$ rangos hasta $2$ mientras que para $\theta=\pi/2,r$ rangos hasta $1$ . El límite superior de $r$ viene dado por: $$\frac{x^2}4+y^2=1\implies r^2(\cos^2(\theta)/4+\sin^2\theta)=1$$ que da $r_\max=(\cos^2(\theta)/4+\sin^2\theta)^{-1/2}$ .

Estos son los dos errores en su integral además de la errata en los límites de $\theta$ (debería ser de $0\to2\pi$ como ha escrito antes).


Como alternativa, puede utilizar la sustitución $x=2r\cos\theta,y=r\sin\theta$ en lugar de la sustitución polar habitual. El límite superior de $r$ se convertirá en $1$ independientemente de $\theta$ . Esto debería ser relativamente más fácil de integrar.

0voto

Felix Marin Puntos 32763

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\on}[1]{\operatorname{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ $\ds{\bbox[5px,#ffd]{}}$


\begin{align} {\cal V} & \equiv \bbox[5px,#ffd]{\iiint_{\mathbb{R}^{3}}\bracks{x^{2} + 4y^{2} < 4} \bracks{z < 12 - 3x - 4y}} \\[2mm] &\ \phantom{AAAAA} \bbox[5px,#ffd]{\bracks{z > 1}\dd x\,\dd y\,\dd z} \\[5mm] & \stackrel{x/2\ \mapsto\ x}{=}\,\,\, 2\int_{1}^{\infty}\iint_{\mathbb{R}^{2}}\bracks{x^{2} + y^{2} < 1} \\[2mm] &\ \phantom{AAAAAAAAAAA} \bracks{z < 12 - 6x - 4y} \dd x\,\dd y\,\dd z \end{align} Utilicemos Coordenadas cilíndricas : \begin{align} {\cal V} & \,\,\,\stackrel{x/2\ \mapsto\ x}{=}\,\,\, 2\int_{1}^{\infty}\iint_{\mathbb{R}^{2}}\ \bracks{0 < \rho < 1}\ \times \\[2mm] &\ \phantom{\stackrel{x/2\ \mapsto\ x}{=}\,\,\,\,\,\,\,} \bracks{z < 12 - 6\rho\cos\pars{\theta} - 4\rho\sin\pars{\theta}} \rho\,\dd \rho\,\dd\theta\,\dd z \\[5mm] & = 2\int_{1}^{\infty}\int_{0}^{2\pi}\int_{0}^{1} \\[2mm] &\ \phantom{2 =} \bracks{z < 12 - 6\rho\braces{\cos\pars{\theta} + {2 \over 3}\sin\pars{\theta}}} \rho\,\dd \rho\,\dd\theta\,\dd z \end{align} Con $\ds{\alpha \equiv \arctan\pars{2 \over 3}}$ : \begin{align} {\cal V} & = 2\int_{1}^{\infty}\int_{0}^{2\pi}\int_{0}^{1} \bracks{z < 12 - 2\root{13}\rho\cos\pars{\theta - \alpha}} \\[2mm] &\ \phantom{AAAAA}\rho\,\dd \rho\,\dd\theta\,\dd z \end{align} En efecto, la última integral es $\ds{\alpha}$ -porque el integrando es una función periódica de período $\ds{2\pi}$ y depende de la diferencia $\ds{\theta - \alpha}$ . A saber, \begin{align} {\cal V} & = 2\int_{-\pi}^{\pi}\int_{0}^{1}\int_{1}^{\infty} \bracks{z < 12 + 2\root{13}\rho\cos\pars{\theta}} \\[5mm] &\ \phantom{AAAAA}\rho\,\dd z\,\dd \rho\,\dd\theta \\[5mm] & = 2\int_{-\pi}^{\pi}\int_{0}^{1}\int_{1}^{12 + 2\root{13}\rho\cos\pars{\theta} \color{red}{\ >\ 1}} \rho\,\dd z\,\dd \rho\,\dd\theta \\[5mm] & = 4\int_{0}^{\pi}\int_{0}^{1} \bracks{11 + 2\root{13}\rho\cos\pars{\theta}} \rho\,\dd \rho\,\dd\theta \\[5mm] & = 4\int_{-\pi/2}^{\pi/2}\int_{0}^{1} \bracks{11 - 2\root{13}\rho\sin\pars{\theta}} \rho\,\dd \rho\,\dd\theta \\[5mm] & = 4\int_{-\pi/2}^{\pi/2}\int_{0}^{1} 11\rho\,\dd \rho\,\dd\theta = \bbx{22\pi} \approx 69.1150 \\ & \end{align}

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X