Lo que pretendemos demostrar aquí es que $$\sum_{k=0}^n {n\choose k} (-1)^{n-k} h_k = [z^n] \frac{1}{1+z} H\left(\frac{z}{1+z}\right)$$ donde $$H(z) = \sum_{q\ge 0} h_q z^q.$$
El lado derecho viene dado por la integral $$\frac{1}{2\pi i}\int_{|z|=\epsilon} \frac{1}{z^{n+1}} \frac{1}{1+z} H\left(\frac{z}{1+z}\right) \; dz \\ = \frac{1}{2\pi i}\int_{|z|=\epsilon} \frac{1}{z^{n+2}} \frac{z}{1+z} H\left(\frac{z}{1+z}\right) \; dz.$$
Ahora pon $$\frac{z}{1+z} = u \quad\text{so that}\quad z = \frac{u}{1-u}$$ y $$dz = \frac{1}{1-u} - \frac{u}{(1-u)^2} (-1) \; du = \frac{1}{(1-u)^2} \; du.$$
Obtenemos para la integral $$\frac{1}{2\pi i}\int_{|u|=\epsilon} \frac{(1-u)^{n+2}}{u^{n+2}} \times u \times H\left(u\right) \; \frac{1}{(1-u)^2} \; du \\ = \frac{1}{2\pi i}\int_{|u|=\epsilon} \frac{(1-u)^{n}}{u^{n+1}} \times H\left(u\right) \; du.$$
Esto es $$[u^n] H(u) (1-u)^n$$ que se evalúa como $$\sum_{k=0}^n h_k {n\choose n-k} (-1)^{n-k} = \sum_{k=0}^n {n\choose k} (-1)^{n-k} h_k$$ mediante inspección.