$$\underbrace{1^4+2^4+3^4\cdots\ + n^4}_{\sum_{k = 1}^n k^4} = \frac{1}{5}n^5 + \frac{1}{2}n^4 + \frac{1}{3}n^3-\frac{1}{30}n$$ Véase el Fórmula de Faulhaber y el Número de Bernoulli: $\text{B}_{j}(x)$
\begin{align} \sum_{k=0}^{n} k^p = \frac{1}{p+1} \sum_{j=0}^p (-1)^j {p+1 \choose j} B_j n^{p+1-j}=\frac{\text{B}_{p+1}(n+1)-\text{B}_{p+1}(0)}{p+1} \end{align}
En su caso \begin{align} \sum_{k = 1}^n k^4 &= \frac{\text{B}_{4+1}(n+1)-\text{B}_{4+1}(0)}{4+1}\\ &= \frac{1}{5}\text{B}_{5}(n+1)\\ &=\frac{1}{5}\left(\frac16 (-1 - n) + \frac53 (1 + n)^3 - \frac52 (1 + n)^4 + (1 + n)^5\right)\\ &=\frac{1}{5}\left(\frac{\left(-1-n\right)}{6}+\frac{5\left(1+n\right)^3\cdot 2}{6}-\frac{5\left(1+n\right)^4\cdot 3}{6}+\frac{\left(1+n\right)^5\cdot 6}{6}\right)\\ &=\frac{1}{5}\left(\frac{6n^5+15n^4+10n^3-n}{6}\right)\\ &=\frac{6n^5+15n^4+10n^3-n}{30}\\ &= \frac{1}{5}n^5 + \frac{1}{2}n^4 + \frac{1}{3}n^3-\frac{1}{30}n \tag*{$\Box$} \end{align}