Hay una fórmula de transformación (podría haberse derivado de la transformación generalizada de la serie de Euler): $$ f(x)=\sum_{n=0}^\infty \, \binom{2n}{n}\, a_n \, x^n = \dfrac{1}{\sqrt{1+4\, x}}\, g\left(\dfrac{x}{1+4\, x}\right) $$ donde $$a_n=\sum_{k=0}^n\, \binom{n}{k}\, (-1)^{n-k}\, b_k$$ y $$g(x)=\sum_{n=0}^\infty \, \binom{2n}{n}\, b_n \, x^n$$
Para $a_n=(-1)^{n-1}\, H_n$ y $b_n=\dfrac{1}{n}$ tenemos la identidad $$ (-1)^{n-1}\, H_n = \sum_{k=1}^n \binom{n}{k}\, \dfrac{(-1)^{n-k}}{n} $$
Además, a partir de la función generadora de coeficientes binomiales centrales, se puede obtener la siguiente f.g: $$ G_1(x)=\sum_{n=1}^\infty \, \binom{2n}{n}\, \dfrac{1}{n}\, x^n = 2\, \log{\left( \dfrac{2}{1+\sqrt{1-4\, x}}\right)} $$
Por lo tanto,
$\displaystyle \begin{aligned} f(x)&=\sum_{n=1}^\infty \, \binom{2n}{n}\, (-1)^{n-1}\, H_n \, x^n = \dfrac{1}{\sqrt{1+4\, x}}\, \sum_{n=1}^\infty \, \binom{2n}{n} \, \dfrac{1}{n}\, \left( \dfrac{x}{1+4\, x} \right)^n\\\\ &= \dfrac{1}{\sqrt{1+4\, x}}\, G_1\left(\dfrac{x}{1+4\, x}\right)\\\\ &= \dfrac{1}{\sqrt{1+4\, x}}\, 2\, \log{\left( \dfrac{2}{1+\sqrt{1-4\, \left(\dfrac{x}{1+4\, x}\right)}}\right)} \end{aligned} $
A continuación, considera la f.g. que necesitamos para obtener la suma requerida:
$\displaystyle \begin{aligned} h(x) &=\sum_{n=1}^\infty \, \binom{2n}{n}\, (-1)^{n-1}\, \dfrac{H_{n+1}}{n+1} \, x^n\\\\ &=\sum_{n=1}^\infty \, \binom{2n}{n}\, (-1)^{n-1}\, \dfrac{H_{n}+\dfrac{1}{n+1}}{n+1} \, x^n\\\\ &=\sum_{n=1}^\infty \, \binom{2n}{n}\, (-1)^{n-1}\, \dfrac{H_{n}}{n+1} \, x^n+\sum_{n=1}^\infty \, \binom{2n}{n}\, (-1)^{n-1}\, \dfrac{1}{(n+1)^2} \, x^n\\\\ &=h_1(x)+h_2(x) \end{aligned} $
Ambos $h_1(x)$ y $h_2(x)$ se puede hallar integrando las f.g. que ya hemos visto:
$\displaystyle \begin{aligned} h_1(x)&=\dfrac{1}{x}\int f(x) \, dx+\dfrac{4 \, \log\left(2\right) + 1}{4 \, x}\\\\ &=\dfrac{4 \, \sqrt{4 \, x + 1} \log\left(\dfrac{2}{\sqrt{\dfrac{1}{4 \, x + 1}} + 1}\right) - 4 \, \log\left(\sqrt{4 \, x + 1} + 1\right) - 1}{4 \, x} + \dfrac{4 \, \log\left(2\right) + 1}{4 \, x} \end{aligned}$
$\displaystyle \begin{aligned} h_2(x)&= \dfrac{1}{x}\, \int \left(\dfrac{1}{x}\, \int -\dfrac{1}{\sqrt{1+4\, x}}\, dx \right)\, dx + \dfrac{\log\left(x\right) + 2}{2 \, x} + 1\\\\ &= -\dfrac{2 \, \sqrt{4 \, x + 1} - \log\left(\sqrt{4 \, x + 1} + 1\right) + \log\left(\sqrt{4 \, x + 1} - 1\right)}{2 \, x} + \dfrac{\log\left(x\right) + 2}{2 \, x} + 1 \end{aligned} $
y la suma requerida es: $\displaystyle \begin{aligned} h\left(\dfrac{1}{4}\right)&=4 \, \sqrt{2} \log\left(\dfrac{2}{\sqrt{\dfrac{1}{2}} + 1}\right) - 4 \, \sqrt{2} + 4 \, \log\left(2\right) + 2 \, \log\left(\dfrac{1}{4}\right) - 2 \, \log\left(\sqrt{2} + 1\right) - 2 \, \log\left(\sqrt{2} - 1\right) + 5\\\\ &=4 \, \sqrt{2} {\left(\log\left(\dfrac{2 \, \sqrt{2}}{\sqrt{2} + 1}\right) - 1\right)} + 5\\\\ &\approx 0.238892690197059 \end{aligned}$
Referencias:
[1]
[2]