2 votos

Prueba $\sum_{n=1}^{\infty}((n+\frac{1}{2})\ln(1+\frac{1}{n})-1)=1-\ln(\sqrt{2\pi})$

Estoy buscando una derivación de la siguiente suma: $$\sum_{n=1}^{\infty}\bigg(\left(n+\frac{1}{2}\right)\ln\left(1+\frac{1}{n}\right)-1\bigg)=1-\ln(\sqrt{2\pi})$$ Mi(s) derivación(es) actual(es) utiliza(n) la función zeta en enteros negativos (y o la aproximación de Stirling/ la derivada de $\zeta'(0)$ ). Quiero evitarlos.

Obtuve la respuesta mediante la regularización de $$-\sum_{i=1}^{\infty}\frac{\zeta(-i)}{i}=\sum_{n=1}^{\infty}\bigg(\left(n+\frac{1}{2}\right)\ln\left(1+ \frac{1}{n}\right)-1\bigg)$$ Mi otro intento fue reescribirlo vía: $$\sum_{n=1}^{\infty}\bigg(\left(n+\frac{1}{2}\right)\ln\left(1+\frac{1}{n}\right)-1\bigg)=\sum_{k=2}^{\infty} \zeta(k)(-1)^k \bigg(\frac{1}{k+1}-\frac{1}{2k}\bigg)$$ Si esto funciona ya estoy contento. Si hay otra forma sencilla me encantaría escucharlo también.

4voto

Gary Puntos 166

Uno tiene \begin{align*} & \sum\limits_{n = 1}^\infty {\left[ {\left( {n + \frac{1}{2}} \right)\log \left( {1 + \frac{1}{n}} \right) - 1} \right]} = \sum\limits_{n = 1}^\infty {\int_0^1 {\frac{{\frac{1}{2} - t}}{{n + t}}dt} } = \sum\limits_{n = 1}^\infty {\int_0^1 {\frac{{\frac{1}{2} - (t - \left\lfloor t \right\rfloor )}}{{n + t}}dt} } \\ & = \sum\limits_{n = 1}^\infty {\int_{n - 1}^n {\frac{{\frac{1}{2} - (t - \left\lfloor t \right\rfloor )}}{{t + 1}}dt} } = \int_0^{ + \infty } {\frac{{\frac{1}{2} - (t - \left\lfloor t \right\rfloor )}}{{t + 1}}dt} . \end{align*} Ahora, por la fórmula de Euler--Maclaurin, $$ \log k! = \left( {k + \frac{1}{2}} \right)\log k- k + C + \int_0^{ + \infty } {\frac{{\frac{1}{2} - (t - \left\lfloor t \right\rfloor )}}{{t + k}}dt} $$ con alguna constante $C$ . Se puede demostrar que la integral es $\mathcal{O}(k^{-1})$ y así por la fórmula de Stirling (o el producto de Wallis), $C=\frac{1}{2}\log (2\pi )$ . Así \begin{align*}\sum\limits_{n = 1}^\infty {\left[ {\left( {n + \frac{1}{2}} \right)\log \left( {1 + \frac{1}{n}} \right) - 1} \right]} & = \log 1! - \left( {\left( {1 + \frac{1}{2}} \right)\log 1 - 1 + \frac{1}{2}\log (2\pi )} \right) \\ &= 1 - \frac{1}{2}\log (2\pi ). \end{align*}

4voto

psychotik Puntos 171

Nueva respuesta. Sea $S_N$ denotan la suma parcial de la primera $N$ términos. Entonces $S_N$ se relaciona con la fórmula de Stirling mediante el siguiente cálculo:

\begin{align*} S_N &= \sum_{n=1}^{N} \left(n+\frac{1}{2}\right)\log(n+1) - \sum_{n=1}^{N} \left(n+\frac{1}{2}\right)\log n - N \\ &= \left(N+\frac{1}{2}\right)\log (N+1) - \log (N!) - N. \end{align*}

Ahora consideramos $e^{-S_N}$ en su lugar. Utilizando la fórmula $\int_{0}^{\infty}x^{n}e^{-sx}\,\mathrm{d}x=\frac{n!}{s^{n+1}}$ ,

\begin{align*} \exp(-S_N) &= \frac{N!e^{N}}{(N+1)^{N+\frac{1}{2}}} \\ &= \frac{N^{N+1}}{(N+1)^{N+\frac{1}{2}}} \int_{0}^{\infty} x^N e^{-N(x-1)} \, \mathrm{d}x \\ &= \frac{1}{(1+\frac{1}{N})^{N+\frac{1}{2}}} \int_{-\infty}^{\infty} \left(1 + \frac{u}{\sqrt{N}}\right)_{+}^N e^{-\sqrt{N}u} \, \mathrm{d}u, \end{align*}

donde utilizamos la sustitución $x=1+\frac{u}{\sqrt{N}}$ en el último paso y $x_{+}:=\max\{0,x\}$ denota la parte positiva de $x$ . Entonces, tomando el límite como $N\to\infty$ y asumiendo por un momento que el orden del límite y la integral pueden intercambiarse, obtenemos

\begin{align*} \lim_{N\to\infty} \exp(-S_N) &= \biggl( \lim_{N\to\infty} \frac{1}{(1+\frac{1}{N})^{N+\frac{1}{2}}} \biggr) \int_{-\infty}^{\infty} \lim_{N\to\infty} \left(1 + \frac{u}{\sqrt{N}}\right)_{+}^N e^{-\sqrt{N}u} \, \mathrm{d}u \\ &= \frac{1}{e} \int_{-\infty}^{\infty} e^{-u^2/2} \, \mathrm{d}u = \frac{\sqrt{2\pi}}{e}. \end{align*}

Aquí, el último paso se deduce de la integral gaussiana. Por lo tanto

$$ \sum_{n=1}^{\infty} \left[ \left(n+\frac{1}{2}\right)\log\left(1+\frac{1}{n}\right)-1 \right] = \lim_{N\to\infty} S_N = 1 - \log\sqrt{2\pi} $$

siempre que el intercambio de límite e integral esté justificado. Para ello, observamos la siguiente desigualdad:

$$ \log(1+x) \leq x - \frac{x^2}{2(1+x_+)}, \qquad x > -1 $$

De ello se deduce que

$$ \left(1 + \frac{u}{\sqrt{N}}\right)_{+}^N e^{-\sqrt{N}u} \leq \exp\left(-\frac{u^2}{2(1+u_+)}\right) $$

es válido para $N\geq 1$ y para todos $u \in \mathbb{R}$ . Por lo tanto, el teorema de convergencia dominada es aplicable y el paso deseado está justificado, completando la prueba.


Respuesta antigua. La suma converge absolutamente por la Prueba de Comparación de Límites con $\zeta(2)$ . Ahora, para cada $n \geq 1$ ,

\begin{align*} \left(n+\frac{1}{2}\right)\log\left(1+\frac{1}{n}\right)-1 &= \left(n+\frac{1}{2}\right)\left(\sum_{j=1}^{\infty}\frac{(-1)^{j-1}}{jn^j} \right)-1\\ &= - \frac{1}{4n^2} + \left(n+\frac{1}{2}\right)\sum_{j=3}^{\infty}\frac{(-1)^{j-1}}{jn^j}\\ &= - \frac{1}{4n^2} + \sum_{j=3}^{\infty}\frac{(-1)^{j-1}}{j}\left(\frac{1}{n^{j-1}}+\frac{1}{2n^j}\right). \end{align*}

Utilizando la fórmula $\int_{0}^{\infty}x^{s-1}e^{-nx}\,\mathrm{d}x=\frac{\Gamma(s)}{n^s}$ se puede reformular como

\begin{align*} &= \int_{0}^{\infty}\left[ - \frac{x}{4} + \sum_{j=3}^{\infty}\frac{(-1)^{j-1}}{j}\left( \frac{x^{j-2}}{(j-2)!} + \frac{x^{j-1}}{2(j-1)!} \right)\right] e^{-nx}\, \mathrm{d}x \\ &= \int_{0}^{\infty} \left( \frac{1}{x} - \left(\frac{1}{2x}+\frac{1}{x^2}\right)(1-e^{-x}) \right) e^{-nx} \, \mathrm{d}x. \end{align*}

Sumando esto para $n = 1, 2, \dots$ obtenemos

\begin{align*} S &:= \sum_{n=1}^{\infty} \left[ \left(n+\frac{1}{2}\right)\log\left(1+\frac{1}{n}\right)-1 \right] \\ &= \int_{0}^{\infty} \left( \frac{1}{x} - \left(\frac{1}{2x}+\frac{1}{x^2}\right)(1-e^{-x}) \right) \frac{1}{e^x - 1} \, \mathrm{d}x \\ &= \int_{0}^{\infty} \left( \frac{1}{x(e^x - 1)} - \left(\frac{1}{2x}+\frac{1}{x^2}\right)e^{-x} \right) \, \mathrm{d}x. \end{align*}

Para calcular el lado derecho, consideramos la siguiente regularización:

\begin{align*} S(s) &:= \int_{0}^{\infty} \left( \frac{1}{x(e^x - 1)} - \left(\frac{1}{2x}+\frac{1}{x^2}\right)e^{-x} \right) x^s \, \mathrm{d}x \\ &= \int_{0}^{\infty} \left( \frac{x^{s-1}}{e^x - 1} - \frac{1}{2}x^{s-1}e^{-x} - x^{s-2}e^{-x} \right) \, \mathrm{d}x. \end{align*}

Esta función es analítica para $\operatorname{Re}(s) > -1$ y $S = S(0)$ . Además, para $s > 2$ se obtiene fácilmente que

\begin{align*} S(s) &= \Gamma(s)\zeta(s)-\frac{1}{2}\Gamma(s)-\Gamma(s-1) \\ &= \Gamma(s+1)\biggl( \frac{\zeta(s)-\frac{1}{2}-\frac{1}{s-1}}{s} \biggr). \end{align*}

Por el principio de continuación analítica, esta identidad debe cumplirse en todas las $\operatorname{Re}(s)>-1$ . Por lo tanto, dejar que $s \to 0$ a la fórmula anterior se obtiene

$$ S = \lim_{s\to 0}S(s) = 1 + \zeta'(0). $$

Ahora la fórmula deseada se deduce de $\zeta'(0) = -\log\sqrt{2\pi}$ .

0voto

user142385 Puntos 26

La serie no es convergente, por lo que la fórmula es incorrecta. $ (n+\frac 1 2 ) \ln (1+\frac 1 n) \to 1$ como $ n \to \infty$ y esto demuestra que LHS es $\infty$ . También RHS depende de $n$ .

0voto

Dig Amma Puntos 118

Consideremos la integral $$\displaystyle \int\limits_{\displaystyle j}^{\displaystyle j+1}\frac{\displaystyle \left \{ x \right \}-\frac{\displaystyle 1}{\displaystyle 2}}{\displaystyle x}dx $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X