$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
\begin{align}
\color{#66f}{\large\int{\dd x \over 1 + 2\sin^{2}\pars{x}}}&
=\int{\sec^{2}\pars{x}\,\dd x \over \sec^{2}\pars{x} + 2\tan^{2}\pars{x}}
= \overbrace{\int{\sec^{2}\pars{x}\,\dd x \over 3\tan^{2}\pars{x} + 1}}
^{\color{#c00000}{\ds{\mbox{Set}\ t \equiv \tan\pars{x}}}}
\\[5mm]&={1 \over \root{3}} \ \underbrace{%
\int{\root{3}\,\dd t \over \pars{\root{3}t}^{2} + 1}}
_{\color{#c00000}{\ds{\root{3}t \equiv \xi\ \imp\ t = {\root{3} \over 3}\,\xi}}}\ =\
{\root{3} \over 3}\int{\dd\xi \over \xi^{2} + 1}
\\[5mm]&={\root{3} \over 3}\,\arctan\pars{\xi}={\root{3} \over 3}\,\arctan\pars{\root{3}t}
\end{align}
$$
\color{#66f}{\large\int{\dd x \a más de 1 + 2\sin^{2}\pars{x}}
={\raíz{3} \over 3}\,\arctan\pars{\raíz{3}\tan\pars{x}}} + \mbox{una constante}
$$