Resolviéndola mediante reducción a lineal a partir de la ecuación de Bernoulli. $y'+xy=y^3$ .
debo usar primero $u=y^{1-3}$
Entonces, cuál será el procedimiento restante.
Resolviéndola mediante reducción a lineal a partir de la ecuación de Bernoulli. $y'+xy=y^3$ .
debo usar primero $u=y^{1-3}$
Entonces, cuál será el procedimiento restante.
$u=y^{1-3}=y^{-2}=>y=u^{-0.5}=>y'=-u^{-3/2}u'/2$ $$ \\-u^{-3/2}u'/2+xu^{-1/2}=u^{-3/2} \\u\equiv0 \;\text or\; u'-2xu=-1 \\u_0'=2xu_0 \\\ln|u_0|=x^2+const \\u_0=ce^{x^2}(c=const) \\u=f(x)e^{x^2} \\u'=f'e^{x^2}+2xfe^{x^2} \\u'-2xu=f'e^{x^2}=-1 \\f'=e^{-x^2} \\f=\int e^{-x^2}dx \\y=\frac{1}{\sqrt{u}}=\dfrac{1}{\sqrt{e^{x^2}\int e^{-x^2}dx}} $$ Respuesta $y=\dfrac{1}{\sqrt{e^{x^2}\int e^{-x^2}dx}}$ o $y\equiv 0$
I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.