EXPRESIÓN EXPLÍCITA Y DERIVACIÓN MEDIANTE PRUEBA DIRECTA
La expresión explícita para $\phi$ que está pidiendo es la siguiente:
Lema:
Dado el núcleo RBF gaussiano $K_\sigma$ entre dos $n$ -vectores dimensionales ( $x$ y otro), para cada $j$ de 0 a infinito y para cada combinación de $n$ índices (etiquetados como $k$ ) que suman $j$ el vector de características $\phi(x)$ tiene una característica que se parece a esto:
$$ \phi_{\sigma, j, k}(x) = c_{\sigma, j}(x) \cdot f_{j, k}(x) $$
Dónde:
$$ \begin{aligned} c_{\sigma, j}(x) &= \frac{K_\sigma(x, 0)}{\sigma^j \sqrt{j!}}\\ f_{j, k}(x) &= \begin{pmatrix} j\\k_1,k_2, \dots, k_n \end{pmatrix}^{\frac{1}{2}} \prod_{d=1}^n{x_d^{k_d}} \end{aligned} $$
Esto puede derivarse directamente de la siguiente manera:
Definiciones:
$$ \begin{aligned} K_\sigma(x, y) = &e^{-\frac{\|x-y\|_2^2}{2\sigma^2}}\\ \epsilon := &e^{\frac{1}{\sigma^2}}\\ \epsilon^x = &\sum_{j=0}^{\infty}\left\{ \frac{x^j}{\sigma^{2j} \cdot j!} \right\}\\ (x_1 + x_2 + \dots + x_n)^j = &\sum_{k_1+k_2+\dots+k_n=j}\left\{ \begin{pmatrix} j\\k_1,k_2, \dots, k_n \end{pmatrix} \prod_{d=1}^n{x_d^{k_d}} \right\}\\ \end{aligned} $$
Prueba directa:
En primer lugar, descomponemos la distancia euclidiana al cuadrado en sus componentes, y realizamos la expansión de Taylor para la $xy$ componente:
$$ \begin{aligned} K(x,y)= &e^{-\frac{\|x-y\|_2^2}{2\sigma^2}} =\epsilon^{\langle x, y \rangle} \cdot\epsilon^{-\frac{\|x\|_2^2}{2}} \cdot \epsilon^{-\frac{\|y\|_2^2}{2}}\\ = &\sum_{j=0}^{\infty}\left\{ \frac{\langle x, y \rangle^j}{\sigma^{2j} \cdot j!} \right\} \cdot\epsilon^{-\frac{\|x\|_2^2}{2}} \cdot \epsilon^{-\frac{\|y\|_2^2}{2}} \end{aligned} $$
Para mayor comodidad, refactorizamos la expresión (utilizando $c$ para una notación más compacta):
$$ \begin{aligned} K(x,y) = &\sum_{j=0}^{\infty}\left\{\frac{\epsilon^{-\frac{\|x\|_2^2}{2}}}{\sigma^j \cdot \sqrt{j!}} \cdot \frac{\epsilon^{-\frac{\|y\|_2^2}{2}}}{\sigma^j \cdot \sqrt{j!}} \cdot \langle x, y \rangle^j \right\}\\ = &\sum_{j=0}^{\infty}\left\{ c_{\sigma, j}(x) \cdot c_{\sigma, j}(y) \cdot \langle x, y \rangle^j \right\}\\ \end{aligned} $$
Y con ayuda del teorema del multinomio, podemos expresar la potencia del producto punto de la siguiente manera (utilizando $f$ para una notación más compacta):
$$ \begin{aligned} \langle x, y \rangle^j = &\left(\sum_{d=1}^n x_d y_d \right)^j\\ = &\sum_{k_1+k_2+\dots+k_n=j}\left\{ \begin{pmatrix} j\\k_1,k_2, \dots, k_n \end{pmatrix} \prod_{d=1}^n{(x_dy_d)^{k_d}} \right\}\\ = &\sum_{k_1+k_2+\dots+k_n=j}\left\{ \begin{pmatrix} j\\k_1,\dots, k_n \end{pmatrix}^{\frac{1}{2}} \prod_{d=1}^n{x_d^{k_d}} \cdot \begin{pmatrix} j\\k_1, \dots, k_n \end{pmatrix}^{\frac{1}{2}} \prod_{d=1}^n{y_d^{k_d}} \right\}\\ =: &\sum_{k_1+k_2+\dots+k_n=j}\left\{f_{j,k}(x) \cdot f_{j, k}(y) \right\}\\ \end{aligned} $$
Ahora sustituyendo en $K$ nos permitirá terminar la prueba:
$$ \begin{aligned} K(x,y) = &\sum_{j=0}^{\infty}\left\{ c_{\sigma, j}(x) \cdot c_{\sigma, j}(y) \cdot \sum_{k_1+k_2+\dots+k_n=j}\left\{f_{j,k}(x) \cdot f_{j, k}(y) \right\} \right\}\\ = &\sum_{j=0}^{\infty} \sum_{k_1+k_2+\dots+k_n=j}\left\{ c_{\sigma, j}(x) f_{j,k}(x) \cdot c_{\sigma, j}(y) f_{j, k}(y) \right\}\\ = &\langle \phi(x), \phi(y) \rangle\\ &\square \end{aligned} $$
Donde cada $\phi$ es un vector con una entrada para cada combinación de $n$ índices (etiquetados como $k$ ) que suman $j$ y esto para cada $j$ de 0 a infinito.
¡espero que esto ayude! Saludos,
Andrés
0 votos
¿por qué este núcleo implica una transformación? ¿O se refiere al espacio de características asociado?
1 votos
Sí, cuál es el espacio de características $\phi(\cdot)$ para que $\phi^T(x)\phi(x^{'}) = exp(-\frac{1}{2\sigma^2}\|x-x^{'}\|^2)$