Calcula $$F(t)=\int_0^t \frac{1}{\sqrt{2\pi}\sigma t} \exp\left[-\frac{1}{2}\left(\frac{\log t-\mu}{\sigma}\right)^2\right]\,dt; t>0$$
Mi intento:
$u=\frac{1}{t}\Rightarrow du=-\frac{1}{t^2}dt$
y
$$dv=\exp\left[-\frac{1}{2}\left(\frac{\log t-\mu}{\sigma}\right)^2\right] \, dt\Rightarrow v=\text{ ?}$$
Fórmula de integración por partes : $$\int u \, dv=uv-\int v \, du$$