$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\bbox[10px,#ffd]{\int_{0}^{1}{x^{b} - x^{a} \over \ln\pars{x}}\,\sin\pars{\ln\pars{x}}\,\dd x} = \int_{0}^{1}\pars{x^{b} - x^{a}}{1 \over 2}\int_{-1}^{1}\expo{\ic k\ln\pars{x}}\,\dd k\,\dd x \\[5mm] = &\ {1 \over 2}\int_{-1}^{1}\int_{0}^{1}\pars{x^{b + \ic k} - x^{a + \ic k}}\dd x\,\dd k = {1 \over 2}\int_{-1}^{1}\pars{{1 \over b + 1 + \ic k} - {1 \over a + 1 + \ic k}}\dd k \\[5mm] = &\ \int_{0}^{1}\bracks{{b + 1 \over \pars{b + 1}^{2} + k^{2}} - {a + 1 \over \pars{a + 1}^{2} + k^{2}}}\,\dd k \\[5mm] = &\ \int_{0}^{1/\pars{b + 1}}{\dd k \over k^{2} + 1} - \int_{0}^{1/\pars{a + 1}}{\dd k \over k^{2} + 1} \\[5mm] = &\ \bbx{\arctan\pars{1 \over b + 1} - \arctan\pars{1 \over a + 1}} \\ &\ \end{align}