Let X denote a Gaussian column vector with mean vector mx=[2,3]T,and co-variance matrix
Cx=[1 0,0 1 ].the random vector Y=AX, where A=[ -1 -2,2 3].
a) Determine E[Y]
Y=AX
E(Y)=A*E(X)= [ -1 -2,2 3]*[2,3]= [-8 ]
13
b) Find and simplify the co-variance matrix of Y
cov[Y,Y]=E[(y-my)(Y-my)T]=E[(A*X-my)(A*X-my)T]
=A*E[(X-mx)(X-mx)T]AT
=[-1 -2,2 3][1 0,0 1][-1 2,-2 3]
=[5 -8,-8 13]
c) Completely specify the probability density function of vector Y
cómo responder a la parte c. T es la transposición. He calculado el valor esperado de Y y la matriz de covarianza de Y.