2 votos

¿Qué hay en el centro de una estrella de neutrones?

¿Qué es la pasta nuclear? Alguien me dijo que el interior de una estrella de neutrones estaba hecho de pasta nuclear. ¿También el interior de una estrella de neutrones es una especie de líquido?

Cuando hay un glaciar enorme, el hielo del fondo está sometido a tanta presión que se mantiene en estado líquido. Entonces, ¿el interior de una estrella de neutrones también es líquido? ¿De qué está hecha la estrella?

5voto

Rob Jeffries Puntos 26630

La estructura de una estrella de neutrones puede resumirse como sigue.

Un corteza exterior que consiste en una red sólida de núcleos en un gas degenerado de electrones ultrarelativistas. A densidades $>4\times10^{14}$ kg/m $^3$ Hay un corteza interna donde se hace energéticamente factible que los neutrones salgan de los núcleos, pero los núcleos (cada vez más ricos en n) mantienen su identidad en una red sólida. A medida que las densidades $>10^{17}$ kg/m $^{3}$ los núcleos pierden su identidad y se "disuelven" en un (super)fluido de neutrones degenerados con una pequeña fracción (1%) de protones y electrones. Entonces, a densidades cercanas a $10^{18}$ kg/m $^3$ allí puede ser algún otro cambio de fase, ya sea en un núcleo sólido de neutrones, materia de quarks o mediante la creación de grados de libertad hadrónicos adicionales.

La pasta nuclear encaja en la región entre la corteza interna y el fluido n,p,e, a densidades entre aproximadamente $3\times 10^{16}$ kg/m $^3$ y $10^{17}$ kg/m $^3$ . La idea básica es que el estado de equilibrio del gas se encuentra minimizando la densidad de energía global. $$ u = n_N (M(A,Z)c^2 + L) + u_n + u_e + ,$$ donde $n_N$ es la densidad numérica de los núcleos, $M(A,Z)$ es la masa en reposo del núcleo en equilibrio de masa atómica $A$ y el número atómico $Z$ (la desintegración beta inversa conduce el equilibrio hacia núcleos ricos en n con grandes $A$ y alta $A/Z$ ), $u_n$ y $u_e$ son las densidades de energía de los gases degenerados de neutrones y electrones, que dependen únicamente de su densidad numérica. $L$ es una densidad de energía (negativa) asociada a la red de núcleos, es decir, algún tipo de red cristalina tiene una energía menor.

La clave aquí es la $(M(A,Z) + L)$ término. A densidades más bajas se puede suponer que los núcleos están relativamente aislados y son pseudoesféricos, por lo que una fórmula de masa semiempírica dará una estimación de $M$ . Pero a densidades superiores a $3\times 10^{16}$ kg/m $^3$ Los núcleos llenan más del 10% del volumen, están rodeados de neutrones que reducen el término de energía superficial, y se hacen tan grandes ( $A>300$ ) que se vuelven susceptibles de fisión (c.f. la condición Bohr-Wheeler para la fisión espontánea).

Esto significa que la estructura de equilibrio de la materia nuclear ya no tiene la forma de núcleos individuales pseudoesféricos. Los núcleos se distorsionan y se juntan en varias formas que dependen de la densidad; primero espaguetis - largas cuerdas de materia nuclear con una salsa de neutrones; luego lasaña - planos de materia nuclear con una salsa de neutrones. A densidades aún mayores, los papeles se invierten: los neutrones se encuentran en cadenas y planos rodeados de materia nuclear.

A densidades superiores a $\sim 10^{17}$ kg/m $^3$ la energía de enlace de la materia nuclear se vuelve tan baja que es más favorable para que los núcleos se disuelvan en neutrones libres (más algunos protones y electrones).

0voto

No soy un experto en este tema y, para ser sincero, no tengo ni idea de cómo se pueden probar estos modelos. Conseguir una pequeña conexión de agujeros de gusano con el interior de una estrella de neutrones para sondearla es algo difícil probablemente imposible.

Las estrellas de neutrones pueden tener capas de cebolla. La corteza está compuesta por material, en su mayoría hierro, con una presión de electrones degenerada que mantiene su equilibrio hidrostático. La siguiente capa es esta pasta, que es una especie de plasma nuclear. La siguiente capa es la red de neutrones. Si el cuerpo es lo suficientemente masivo puede haber una región de hiperones más profunda compuesta por $\Xi^0$ , $\Sigma^0$ y $\Delta^0$ en el decuplo de bariones. Entonces, si el cuerpo es realmente masivo, el núcleo podría estar compuesto por un plasma de quark-gluones. Hay algunos intentos de utilizar estos modelos para comprender la física del exterior de la estrella de neutrones, como su campo magnético.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X