1 votos

Pregunta sobre la fricción

Para que un objeto en el suelo se ponga en movimiento, la fuerza aplicada (llamémosla $f$ ) debe ser mayor que $\mu_sN$ , donde $\mu_s$ es el coeficiente de fricción estática entre el objeto y el suelo, y $N$ es la fuerza normal.

Sin embargo, cuando el objeto ya se mueve a velocidad constante con esta fuerza aplicada $f$ y reducimos esta fuerza para que sea menor que $\mu_s N$ el objeto seguirá moviéndose. Una explicación intuitiva para esto sería que es más fácil mantener un objeto en movimiento que hacerlo empezar a moverse .

Mi pregunta será entonces: Imagina que un objeto se mueve a velocidad constante, y las 2 fuerzas que actúan sobre él en la dirección horizontal son $f$ y la fricción, ¿hay alguna forma de conocer el valor límite para $f$ ¿dónde la fricción pasa de ser cinética a estática y el objeto deja de moverse?

Gracias.

PD: Ahora mismo, sé que para encontrar la distancia para que el objeto deje de moverse, podemos utilizar la aproximación energética, igualando la energía cinética al trabajo realizado por el rozamiento, pero no tengo ni idea de cómo podemos encontrar exactamente el valor límite de $f$ antes de que el objeto se detenga.

1voto

math Puntos 16

Mi pregunta será entonces: Imagina que un objeto se mueve a velocidad constante velocidad constante, y las 2 fuerzas que actúan sobre él en la dirección horizontal son f y el rozamiento, ¿hay alguna forma de conocer el valor límite de f, donde el rozamiento pasa de cinético a estático, y el objeto se detiene y el objeto deja de moverse?

Tal vez debería aclarar un poco su pregunta. La fricción pasará de ser cinética a estática si la velocidad relativa entre los cuerpos es nula durante algún tiempo (normalmente despreciable). Si la fuerza f es menor que la fricción cinética, entonces la velocidad relativa entre los cuerpos disminuirá, y en un tiempo finito disminuye a cero.

Si tu pregunta es si existe una relación simple entre el coeficiente de rozamiento estático y el cinético, entonces la respuesta es no, aunque para los modelos de materiales especiales, pueden darse estos casos. Otra cuestión es si estos modelos son modelos precisos de cualquier cuerpo realizable experimentalmente.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X