Dejemos que $\cosh$ sea dada por
$$\cosh(z) := \sum_{k=0}^\infty \frac{z^{2k}}{(2k)!}, z \in \mathbb{C}$$
¿Cómo se puede demostrar que la serie de potencias converge absolutamente para todo $z \in \mathbb{C}$ ?
También tengo que demostrar que
$$\cosh(z) = \frac{1}{2} (\exp(z)+\exp(-z))$$
Al utilizar la prueba de proporción obtengo
$$\left|\frac{(2k)!}{(2k+1)!} \frac{z^{2k+1}}{z^{2k}}\right| = \frac{|z|}{k+1} \Rightarrow 0 \text{ (n} \to \infty) < 1 \text{ for all }z \Rightarrow r = \infty$$ (mientras $r$ es el radio de convergencia). Por lo tanto, la serie de potencias converge absolutamente para todo $z$ . ¿Es esto correcto?
En cuanto a $$\cosh(z) = \frac{1}{2} (\exp(z)+\exp(-z))$$ Lo tengo,
\begin{eqnarray} \frac{1}{2}\left(\sum_{k=0}^{+\infty}\frac{z^k}{k!} + \sum_{k=0}^{+\infty}\frac{(-1)^kz^k}{k!}\right) &=& \frac{1}{2}\sum_{k=0}^{+\infty}\frac{(1 -(-1)^k)z^k}{k!} \\ &=& \frac{1}{2}\sum_{k=0}^{+\infty}\frac{(1 -(-1)^{2k})z^{2k}}{(2k)!} + \frac{1}{2}\sum_{k=0}^{+\infty}\frac{(1 -(-1)^{2k})z^{2k}}{(2k+1)!} \\ &=& 0 + \frac{2}{2}\sum_{k=0}^{+\infty}\frac{z^{2k}}{(2k+1)!}\\ &=& \sum_{k=0}^{+\infty}\frac{z^{2k}}{(2k+1)!} \end{eqnarray}
¿Es eso correcto?