9 votos

Cuáles son todos los números enteros positivos posibles $k$ tal que $k=\frac{a^2+b^2+c^2}{bc+ca+ab}$ para algunos enteros positivos $a$ , $b$ y $c$ ?

Esta pregunta se inspira en celui-ci . Viene en dos partes.

Pregunta 1. Determinar todos los enteros positivos $k$ tal que hay enteros positivos $a$ , $b$ y $c$ tal que $$\frac{a^2+b^2+c^2}{bc+ca+ab}=k\,.\tag{*}$$

Pregunta 2. Para cada número entero positivo $k$ descubierto en la pregunta 1, ¿cuáles son todos los triples $(a,b,c)$ de enteros positivos tal que se cumpla la condición (*)?

Aquí hay tres valores de $k$ que tienen la propiedad requerida.

  • Caso I: $k=1$ . Todas las soluciones $(a,b,c)$ son de la forma $$(a,b,c)=(n,n,n)$$ donde $n$ es un número entero positivo.

  • Caso II: $k=2$ . Se puede probar por Salto de Vieta que cada solución $(a,b,c)$ es una permutación de $$\big(tm^2,tn^2,t(m+n)^2\big)\tag{#}$$ para algunos enteros positivos $t$ , $m$ y $n$ (podemos suponer que $m$ y $n$ son relativamente primos). Una prueba de esta afirmación puede verse en la parte oculta de abajo.

  • Caso III: $k=5$ . Todas las soluciones se encuentran en este enlace .

¿Hay otros valores de $k$ con la propiedad requerida? Si es así, ¿hay infinitas?

Aquí hay un esquema de prueba para mi afirmación cuando $k=2$ si quiere leer. Deje que $S$ denotan el conjunto de soluciones $(a,b,c)\in\mathbb{Z}_{>0}^3$ a (*). Definir un similitud relación $\sim$ en $S$ que es una relación de equivalencia en $S$ generada al exigir que cada triple $(a,b,c)\in S$ es similar a cualquier permutación de $(a,b,c)$ y que $(a,b,c)$ es similar a $(a,b,2a+2b-c)$ siempre y cuando $(a,b,2a+2b-c)$ también está en $S$ . Elige una clase de equivalencia $C$ de $S$ inducido por $\sim$ y supongamos que $(a,b,c)$ es su triple mínimo en el sentido de que $a+b+c$ es el más pequeño entre todos los triples de $C$ que no es de la forma (#). Podemos suponer sin pérdida de generalidad que $a\leq b\leq c$ . Tenga en cuenta que $2a+2b-c\leq 0$ o $(a,b,2a+2b-c)$ es un triple más "pequeño" que $(a,b,c)$ en $C$ que no es de la forma (#). Demuestre que $c=2a+2b$ debe sostenerse, y esto implica $b=c$ . De ello se desprende que $(a,b,c)=(t,t,4t)=\big(1^2t,1^2t,(1+1)^2t\big)$ para algún número entero positivo $t$ Y esto es una contradicción.

6voto

Stephan Aßmus Puntos 16

Existe tal solución si y sólo si ambos $k-1$ y $k+2$ tienen expresiones enteras (bueno, diferentes) como algunas $u^2 + 3 v^2.$

La justificación de esto está en varias respuestas que publiqué en

Encuentra una solución: $3(x^2+y^2+z^2)=10(xy+yz+zx)$

$$ $$ $$ $$

Dado $$ p^2 + 3 q^2 = 2 + k, $$ $$ r^2 + 3 s^2 = 4(k-1), $$ podemos resolver $$ (x^2 + y^2 + z^2) = k (yz + zx + xy) $$ con $$ x = 2 p^2 + 6 q^2 - p r - 3 p s + 3 q r - 3 q s, $$ $$ y = 2 p^2 + 6 q^2 - p r + 3 p s - 3 q r - 3 q s, $$ $$ z = 2 p^2 + 6 q^2 + 2 p r + 6 q s. $$

No me di cuenta de inmediato, el proceso de Vieta Jumping nos permite tomar una solución mixta y crear una con toda la $\pm$ signo. Supongamos que $x < 0,$ $y > 0,$ $z>0.$ Hacemos un solo salto: $$ x \mapsto k(y+z) - x, $$ donde el nuevo $x$ ¡es entonces positivo!

Los valores permitidos de su $k$ de 2 a 1000 son

  2      5     10     14     17     26     29     37     50     62
 65     74     77     82     98    101    109    110    122    125
145    149    170    173    190    194    197    209    226    242
245    257    269    290    302    305    314    325    334    362
365    398    401    410    434    437    442    469    482    485
497    509    514    530    554    557    577    590    602    605
626    629    674    677    685    689    701    722    725    730
770    773    785    794    830    842    845    869    874    890
901    917    962    965    973    974    989

Todas ellas conducen a soluciones $(a,b,c) $ donde puede ser que algunas variables sean negativas y otras positivas.

Permítanme trabajar con algunos de los más pequeños como $k,$ ver si aparecen soluciones positivas.

$$ k = 17; \; \; \; (377,17,5) $$

$$ k = 26; \; \; \; (418,13,3) $$

$$ k = 29; \; \; \; (1109,11,27) $$

POR RECETA .........................................

Mon Jul  6 19:11:55 PDT 2020

      2  ( 1, 1 , 4 )  p 1 q 1 r 1 s 1
      5  ( -1, 5 , 17 )   ( 111, 5 , 17 )  p 2 q 1 r 2 s 2
     10  ( 2, -1 , 5 )   ( 2, 71 , 5 )  p 0 q 2 r 3 s 3
     14  ( -1, 2 , 11 )   ( 183, 2 , 11 )  p 2 q 2 r 2 s 4
     17  ( -13, 23 , 47 )   ( 1203, 23 , 47 )  p 4 q 1 r 4 s 4
     26  ( 3, -2 , 13 )   ( 3, 418 , 13 )  p 1 q 3 r 5 s 5
     29  ( -7, 11 , 89 )   ( 2907, 11 , 89 )  p 2 q 3 r 2 s 6
     37  ( -11, 19 , 31 )   ( 1861, 19 , 31 )  p 6 q 1 r 6 s 6
     50  ( -5, 7 , 76 )   ( 4155, 7 , 76 )  p 2 q 4 r 2 s 8
     62  ( -5, 7 , 22 )   ( 1803, 7 , 22 )  p 4 q 4 r 1 s 9
     65  ( -61, 107 , 155 )   ( 17091, 107 , 155 )  p 8 q 1 r 8 s 8
     74  ( 22, -17 , 109 )   ( 22, 9711 , 109 )  p 1 q 5 r 7 s 9
     77  ( -13, 17 , 233 )   ( 19263, 17 , 233 )  p 2 q 5 r 2 s 10
     82  ( 5, -4 , 41 )   ( 5, 3776 , 41 )  p 3 q 5 r 9 s 9
     98  ( -4, 5 , 29 )   ( 3336, 5 , 29 )  p 5 q 5 r 5 s 11
    101  ( -97, 173 , 233 )   ( 41103, 173 , 233 )  p 10 q 1 r 10 s 10
    109  ( -29, 43 , 97 )   ( 15289, 43 , 97 )  p 6 q 5 r 0 s 12
    110  ( -4, 5 , 83 )   ( 9684, 5 , 83 )  p 2 q 6 r 2 s 12
    122  ( 6, -5 , 61 )   ( 6, 8179 , 61 )  p 4 q 6 r 11 s 11
    125  ( -37, 59 , 105 )   ( 20537, 59 , 105 )  p 10 q 3 r 8 s 12
    145  ( 7, -5 , 19 )   ( 7, 3775 , 19 )  p 0 q 7 r 12 s 12
    149  ( -19, 23 , 449 )   ( 70347, 23 , 449 )  p 2 q 7 r 2 s 14
    170  ( -15, 19 , 82 )   ( 17185, 19 , 82 )  p 5 q 7 r 1 s 15
    173  ( -23, 31 , 97 )   ( 22167, 31 , 97 )  p 10 q 5 r 10 s 14
    190  ( 5, -4 , 23 )   ( 5, 5324 , 23 )  p 0 q 8 r 9 s 15
    194  ( -11, 13 , 292 )   ( 59181, 13 , 292 )  p 2 q 8 r 2 s 16
    197  ( -61, 159 , 101 )   ( 51281, 159 , 101 )  p 14 q 1 r 4 s 16
    209  ( -97, 119 , 611 )   ( 152667, 119 , 611 )  p 8 q 7 r 8 s 16
    226  ( 8, -7 , 113 )   ( 8, 27353 , 113 )  p 6 q 8 r 15 s 15
    242  ( 31, -24 , 115 )   ( 31, 35356 , 115 )  p 1 q 9 r 14 s 16
    245  ( -25, 29 , 737 )   ( 187695, 29 , 737 )  p 2 q 9 r 2 s 18
    257  ( 131, -109 , 755 )   ( 131, 227811 , 755 )  p 4 q 9 r 16 s 16
    269  ( -79, 123 , 227 )   ( 94229, 123 , 227 )  p 14 q 5 r 10 s 18
    290  ( 9, -8 , 145 )   ( 9, 44668 , 145 )  p 7 q 9 r 17 s 17
    302  ( -7, 8 , 227 )   ( 70977, 8 , 227 )  p 2 q 10 r 2 s 20
    305  ( -55, 69 , 293 )   ( 110465, 69 , 293 )  p 8 q 9 r 4 s 20
    314  ( 43, -38 , 469 )   ( 43, 160806 , 469 )  p 4 q 10 r 13 s 19
    325  ( -107, 199 , 235 )   ( 141157, 199 , 235 )  p 18 q 1 r 18 s 18
    334  ( -11, 13 , 82 )   ( 31741, 13 , 82 )  p 6 q 10 r 3 s 21
    362  ( 27, -23 , 178 )   ( 27, 74233 , 178 )  p 1 q 11 r 11 s 21
    365  ( -31, 35 , 1097 )   ( 413211, 35 , 1097 )  p 2 q 11 r 2 s 22
    398  ( -14, 19 , 55 )   ( 29466, 19 , 55 )  p 10 q 10 r 1 s 23
    401  ( -79, 101 , 381 )   ( 193361, 101 , 381 )  p 16 q 7 r 20 s 20
    410  ( -59, 67 , 610 )   ( 277629, 67 , 610 )  p 7 q 11 r 7 s 23
    434  ( -17, 19 , 652 )   ( 291231, 19 , 652 )  p 2 q 12 r 2 s 24
    437  ( -121, 179 , 381 )   ( 244841, 179 , 381 )  p 14 q 9 r 4 s 24
    442  ( -34, 41 , 215 )   ( 113186, 41 , 215 )  p 9 q 11 r 6 s 24
    469  ( -137, 211 , 397 )   ( 285289, 211 , 397 )  p 18 q 7 r 12 s 24
    482  ( -4, 5 , 21 )   ( 12536, 5 , 21 )  p 11 q 11 r 7 s 25
    485  ( -481, 905 , 1037 )   ( 942351, 905 , 1037 )  p 22 q 1 r 22 s 22
    497  ( -313, 407 , 1403 )   ( 899883, 407 , 1403 )  p 16 q 9 r 16 s 24
    509  ( -37, 41 , 1529 )   ( 799167, 41 , 1529 )  p 2 q 13 r 2 s 26
    514  ( 44, -37 , 251 )   ( 44, 151667 , 251 )  p 3 q 13 r 18 s 24
    530  ( 151, -125 , 772 )   ( 151, 489315 , 772 )  p 5 q 13 r 23 s 23
    554  ( -29, 33 , 274 )   ( 170107, 33 , 274 )  p 7 q 13 r 5 s 27
    557  ( -283, 347 , 1613 )   ( 1092003, 347 , 1613 )  p 14 q 11 r 14 s 26
    577  ( -191, 361 , 409 )   ( 444481, 361 , 409 )  p 24 q 1 r 24 s 24
    590  ( -10, 11 , 443 )   ( 267870, 11 , 443 )  p 2 q 14 r 2 s 28
    602  ( 61, -50 , 291 )   ( 61, 211954 , 291 )  p 4 q 14 r 23 s 25
    605  ( -81, 95 , 593 )   ( 416321, 95 , 593 )  p 10 q 13 r 8 s 28
    626  ( 13, -12 , 313 )   ( 13, 204088 , 313 )  p 11 q 13 r 25 s 25
    629  ( -511, 743 , 1661 )   ( 1512627, 743 , 1661 )  p 22 q 7 r 22 s 26
    674  ( 133, -116 , 997 )   ( 133, 761736 , 997 )  p 1 q 15 r 13 s 29
    677  ( -43, 47 , 2033 )   ( 1408203, 47 , 2033 )  p 2 q 15 r 2 s 30
    685  ( -191, 283 , 595 )   ( 601621, 283 , 595 )  p 18 q 11 r 6 s 30
    689  ( 101, -87 , 677 )   ( 101, 536129 , 677 )  p 4 q 15 r 20 s 28
    701  ( -129, 161 , 671 )   ( 583361, 161 , 671 )  p 14 q 13 r 10 s 30
    722  ( -140, 163 , 1063 )   ( 885312, 163 , 1063 )  p 7 q 15 r 1 s 31
    725  ( -211, 323 , 615 )   ( 680261, 323 , 615 )  p 22 q 9 r 14 s 30
    730  ( 14, -13 , 365 )   ( 14, 276683 , 365 )  p 12 q 14 r 27 s 27
    770  ( -23, 25 , 1156 )   ( 909393, 25 , 1156 )  p 2 q 16 r 2 s 32
    773  ( -71, 85 , 451 )   ( 414399, 85 , 451 )  p 10 q 15 r 4 s 32
    785  ( -235, 653 , 369 )   ( 802505, 653 , 369 )  p 28 q 1 r 8 s 32
    794  ( -47, 54 , 391 )   ( 353377, 54 , 391 )  p 11 q 15 r 10 s 32
    830  ( -9, 10 , 103 )   ( 93799, 10 , 103 )  p 8 q 16 r 7 s 33
    842  ( 15, -14 , 421 )   ( 15, 367126 , 421 )  p 13 q 15 r 29 s 29
    845  ( -15, 19 , 73 )   ( 77755, 19 , 73 )  p 22 q 11 r 26 s 30
    869  ( -49, 53 , 2609 )   ( 2313327, 53 , 2609 )  p 2 q 17 r 2 s 34
    874  ( 41, -37 , 434 )   ( 41, 415187 , 434 )  p 3 q 17 r 15 s 33
    890  ( 97, -89 , 1330 )   ( 97, 1270119 , 1330 )  p 5 q 17 r 17 s 33
    901  ( 181, -149 , 871 )   ( 181, 948001 , 871 )  p 6 q 17 r 30 s 30
    917  ( -859, 1415 , 2201 )   ( 3316731, 1415 , 2201 )  p 26 q 9 r 14 s 34
    962  ( -65, 76 , 471 )   ( 526279, 76 , 471 )  p 14 q 16 r 13 s 35
    965  ( 245, -223 , 2879 )   ( 245, 3014883 , 2879 )  p 10 q 17 r 28 s 32
    973  ( -61, 155 , 101 )   ( 249149, 155 , 101 )  p 30 q 5 r 0 s 36
    974  ( -13, 14 , 731 )   ( 725643, 14 , 731 )  p 2 q 18 r 2 s 36
    989  ( -277, 411 , 857 )   ( 1254329, 411 , 857 )  p 22 q 13 r 8 s 36

Mon Jul  6 19:11:55 PDT 2020

3voto

Tomita Puntos 11

Pregunta $2.$

$$\frac{a^2+b^2+c^2}{bc+ca+ab}=k\tag{1}$$
Podemos obtener una solución paramétrica primitiva a partir de una solución conocida a continuación.

Dejemos que ${p,q,r}$ es una solución conocida para la ecuación $(1)$ .
Sustituir $a=pt+m, b=qt+n, c=rt+s$ a la ecuación $(1)$ , entonces obtenemos
$$t = \frac{-(-m^2+kmn+ksm+kns-s^2-n^2)}{-2nq-2mp+kmq+kpn+knr+kqs+ksp+krm-2sr}$$
Entonces obtenemos una solución paramétrica.

$a = (-p+kr+kq)m^2+((-2q+kr)n+(-2r+kq)s)m+pn^2-pkns+ps^2$
$b = m^2q+((-2p+kr)n-kqs)m+(kr-q+kp)n^2+(-2r+kp)sn+qs^2$
$c = rm^2+(-knr+(-2p+kq)s)m+n^2r+(kp-2q)sn+(kp-r+kq)s^2$

$m,n,s$ son arbitrarios.

Ejemplo:
$(k,p,q,r)=(5,3,5,41)$

$a = 227m^2-15ns+3s^2+3n^2+195mn-57sm$
$b = 5m^2-25sm+5s^2+215n^2+199mn-67ns$
$c = 41m^2-205mn-s^2+41n^2+5ns+19sm$

[ $a,b,c$ ]

[ $ 3, 5, 41$ ]
[ $ 3, 5045, 1049$ ]
[ $ 227, 5, 41$ ]
[ $ 17, 5, 111$ ]
[ $ 635, 3149, 17$ ]
[ $ 545, 2901, 47$ ]
[ $ 461, 2663, 75$ ]
[ $ 383, 2435, 101$ ]
[ $1277, 6375, 41$ ]
[ $ 797, 5015, 201$ ]
[ $ 593, 4395, 269$ ]
[ $1361, 8517, 335$ ]
[ $1223, 8105, 381$ ]
[ $1091, 7703, 425$ ]
[ $ 965, 7311, 467$ ]
[ $ 731, 6557, 545$ ]
[ $1739, 11933, 615$ ]
[ $1427, 10965, 719$ ]
[ $1139, 10037, 815$ ]
[ $ 635, 111, 17$ ]
[ $ 545, 59, 47$ ]
[ $1623, 185, 131$ ]
[ $3713, 635, 111$ ]
[ $3491, 503, 185$ ]
[ $3275, 381, 257$ ]
[ $3065, 269, 327$ ]
[ $2861, 167, 395$ ]
[ $5393, 5, 1119$ ]
[ $6653, 1335, 41$ ]
[ $6065, 971, 237$ ]
[ $5501, 647, 425$ ]
[ $8643, 1175, 521$ ]
[ $8301, 983, 635$ ]
[ $7635, 629, 857$ ]
[ $7311, 467, 965$ ]
[ $10727, 75, 2141$ ]
[ $12491, 1853, 615$ ]
[ $11675, 1389, 887$ ]
[ $10883, 965, 1151$ ]
[ $11399, 2217, 125$ ]
[ $11009, 1973, 255$ ]

1voto

Stephan Aßmus Puntos 16

Esta es una lista que da una sola solución positiva para cada legalidad $k < 5100.$ El método es el de mi primera respuesta, sólo cambié las declaraciones int en el programa C++ a mpz_class, para permitir números más grandes.

Tue Jul  7 10:02:20 PDT 2020
      2  ( 1, 1 , 4 )  p 1 q 1 r 1 s 1
      5  ( -1, 5 , 17 )   ( 111, 5 , 17 )  p 2 q 1 r 2 s 2
     10  ( 2, -1 , 5 )   ( 2, 71 , 5 )  p 0 q 2 r 3 s 3
     14  ( -1, 2 , 11 )   ( 183, 2 , 11 )  p 2 q 2 r 2 s 4
     17  ( -13, 23 , 47 )   ( 1203, 23 , 47 )  p 4 q 1 r 4 s 4
     26  ( 3, -2 , 13 )   ( 3, 418 , 13 )  p 1 q 3 r 5 s 5
     29  ( -7, 11 , 89 )   ( 2907, 11 , 89 )  p 2 q 3 r 2 s 6
     37  ( -11, 19 , 31 )   ( 1861, 19 , 31 )  p 6 q 1 r 6 s 6
     50  ( -5, 7 , 76 )   ( 4155, 7 , 76 )  p 2 q 4 r 2 s 8
     62  ( -5, 7 , 22 )   ( 1803, 7 , 22 )  p 4 q 4 r 1 s 9
     65  ( -61, 107 , 155 )   ( 17091, 107 , 155 )  p 8 q 1 r 8 s 8
     74  ( 22, -17 , 109 )   ( 22, 9711 , 109 )  p 1 q 5 r 7 s 9
     77  ( -13, 17 , 233 )   ( 19263, 17 , 233 )  p 2 q 5 r 2 s 10
     82  ( 5, -4 , 41 )   ( 5, 3776 , 41 )  p 3 q 5 r 9 s 9
     98  ( -4, 5 , 29 )   ( 3336, 5 , 29 )  p 5 q 5 r 5 s 11
    101  ( -97, 173 , 233 )   ( 41103, 173 , 233 )  p 10 q 1 r 10 s 10
    109  ( -29, 43 , 97 )   ( 15289, 43 , 97 )  p 6 q 5 r 0 s 12
    110  ( -4, 5 , 83 )   ( 9684, 5 , 83 )  p 2 q 6 r 2 s 12
    122  ( 6, -5 , 61 )   ( 6, 8179 , 61 )  p 4 q 6 r 11 s 11
    125  ( -37, 59 , 105 )   ( 20537, 59 , 105 )  p 10 q 3 r 8 s 12
    145  ( 7, -5 , 19 )   ( 7, 3775 , 19 )  p 0 q 7 r 12 s 12
    149  ( -19, 23 , 449 )   ( 70347, 23 , 449 )  p 2 q 7 r 2 s 14
    170  ( -15, 19 , 82 )   ( 17185, 19 , 82 )  p 5 q 7 r 1 s 15
    173  ( -23, 31 , 97 )   ( 22167, 31 , 97 )  p 10 q 5 r 10 s 14
    190  ( 5, -4 , 23 )   ( 5, 5324 , 23 )  p 0 q 8 r 9 s 15
    194  ( -11, 13 , 292 )   ( 59181, 13 , 292 )  p 2 q 8 r 2 s 16
    197  ( -61, 159 , 101 )   ( 51281, 159 , 101 )  p 14 q 1 r 4 s 16
    209  ( -97, 119 , 611 )   ( 152667, 119 , 611 )  p 8 q 7 r 8 s 16
    226  ( 8, -7 , 113 )   ( 8, 27353 , 113 )  p 6 q 8 r 15 s 15
    242  ( 31, -24 , 115 )   ( 31, 35356 , 115 )  p 1 q 9 r 14 s 16
    245  ( -25, 29 , 737 )   ( 187695, 29 , 737 )  p 2 q 9 r 2 s 18
    257  ( 131, -109 , 755 )   ( 131, 227811 , 755 )  p 4 q 9 r 16 s 16
    269  ( -79, 123 , 227 )   ( 94229, 123 , 227 )  p 14 q 5 r 10 s 18
    290  ( 9, -8 , 145 )   ( 9, 44668 , 145 )  p 7 q 9 r 17 s 17
    302  ( -7, 8 , 227 )   ( 70977, 8 , 227 )  p 2 q 10 r 2 s 20
    305  ( -55, 69 , 293 )   ( 110465, 69 , 293 )  p 8 q 9 r 4 s 20
    314  ( 43, -38 , 469 )   ( 43, 160806 , 469 )  p 4 q 10 r 13 s 19
    325  ( -107, 199 , 235 )   ( 141157, 199 , 235 )  p 18 q 1 r 18 s 18
    334  ( -11, 13 , 82 )   ( 31741, 13 , 82 )  p 6 q 10 r 3 s 21
    362  ( 27, -23 , 178 )   ( 27, 74233 , 178 )  p 1 q 11 r 11 s 21
    365  ( -31, 35 , 1097 )   ( 413211, 35 , 1097 )  p 2 q 11 r 2 s 22
    398  ( -14, 19 , 55 )   ( 29466, 19 , 55 )  p 10 q 10 r 1 s 23
    401  ( -79, 101 , 381 )   ( 193361, 101 , 381 )  p 16 q 7 r 20 s 20
    410  ( -59, 67 , 610 )   ( 277629, 67 , 610 )  p 7 q 11 r 7 s 23
    434  ( -17, 19 , 652 )   ( 291231, 19 , 652 )  p 2 q 12 r 2 s 24
    437  ( -121, 179 , 381 )   ( 244841, 179 , 381 )  p 14 q 9 r 4 s 24
    442  ( -34, 41 , 215 )   ( 113186, 41 , 215 )  p 9 q 11 r 6 s 24
    469  ( -137, 211 , 397 )   ( 285289, 211 , 397 )  p 18 q 7 r 12 s 24
    482  ( -4, 5 , 21 )   ( 12536, 5 , 21 )  p 11 q 11 r 7 s 25
    485  ( -481, 905 , 1037 )   ( 942351, 905 , 1037 )  p 22 q 1 r 22 s 22
    497  ( -313, 407 , 1403 )   ( 899883, 407 , 1403 )  p 16 q 9 r 16 s 24
    509  ( -37, 41 , 1529 )   ( 799167, 41 , 1529 )  p 2 q 13 r 2 s 26
    514  ( 44, -37 , 251 )   ( 44, 151667 , 251 )  p 3 q 13 r 18 s 24
    530  ( 151, -125 , 772 )   ( 151, 489315 , 772 )  p 5 q 13 r 23 s 23
    554  ( -29, 33 , 274 )   ( 170107, 33 , 274 )  p 7 q 13 r 5 s 27
    557  ( -283, 347 , 1613 )   ( 1092003, 347 , 1613 )  p 14 q 11 r 14 s 26
    577  ( -191, 361 , 409 )   ( 444481, 361 , 409 )  p 24 q 1 r 24 s 24
    590  ( -10, 11 , 443 )   ( 267870, 11 , 443 )  p 2 q 14 r 2 s 28
    602  ( 61, -50 , 291 )   ( 61, 211954 , 291 )  p 4 q 14 r 23 s 25
    605  ( -81, 95 , 593 )   ( 416321, 95 , 593 )  p 10 q 13 r 8 s 28
    626  ( 13, -12 , 313 )   ( 13, 204088 , 313 )  p 11 q 13 r 25 s 25
    629  ( -511, 743 , 1661 )   ( 1512627, 743 , 1661 )  p 22 q 7 r 22 s 26
    674  ( 133, -116 , 997 )   ( 133, 761736 , 997 )  p 1 q 15 r 13 s 29
    677  ( -43, 47 , 2033 )   ( 1408203, 47 , 2033 )  p 2 q 15 r 2 s 30
    685  ( -191, 283 , 595 )   ( 601621, 283 , 595 )  p 18 q 11 r 6 s 30
    689  ( 101, -87 , 677 )   ( 101, 536129 , 677 )  p 4 q 15 r 20 s 28
    701  ( -129, 161 , 671 )   ( 583361, 161 , 671 )  p 14 q 13 r 10 s 30
    722  ( -140, 163 , 1063 )   ( 885312, 163 , 1063 )  p 7 q 15 r 1 s 31
    725  ( -211, 323 , 615 )   ( 680261, 323 , 615 )  p 22 q 9 r 14 s 30
    730  ( 14, -13 , 365 )   ( 14, 276683 , 365 )  p 12 q 14 r 27 s 27
    770  ( -23, 25 , 1156 )   ( 909393, 25 , 1156 )  p 2 q 16 r 2 s 32
    773  ( -71, 85 , 451 )   ( 414399, 85 , 451 )  p 10 q 15 r 4 s 32
    785  ( -235, 653 , 369 )   ( 802505, 653 , 369 )  p 28 q 1 r 8 s 32
    794  ( -47, 54 , 391 )   ( 353377, 54 , 391 )  p 11 q 15 r 10 s 32
    830  ( -9, 10 , 103 )   ( 93799, 10 , 103 )  p 8 q 16 r 7 s 33
    842  ( 15, -14 , 421 )   ( 15, 367126 , 421 )  p 13 q 15 r 29 s 29
    845  ( -15, 19 , 73 )   ( 77755, 19 , 73 )  p 22 q 11 r 26 s 30
    869  ( -49, 53 , 2609 )   ( 2313327, 53 , 2609 )  p 2 q 17 r 2 s 34
    874  ( 41, -37 , 434 )   ( 41, 415187 , 434 )  p 3 q 17 r 15 s 33
    890  ( 97, -89 , 1330 )   ( 97, 1270119 , 1330 )  p 5 q 17 r 17 s 33
    901  ( 181, -149 , 871 )   ( 181, 948001 , 871 )  p 6 q 17 r 30 s 30
    917  ( -859, 1415 , 2201 )   ( 3316731, 1415 , 2201 )  p 26 q 9 r 14 s 34
    962  ( -65, 76 , 471 )   ( 526279, 76 , 471 )  p 14 q 16 r 13 s 35
    965  ( 245, -223 , 2879 )   ( 245, 3014883 , 2879 )  p 10 q 17 r 28 s 32
    973  ( -61, 155 , 101 )   ( 249149, 155 , 101 )  p 30 q 5 r 0 s 36
    974  ( -13, 14 , 731 )   ( 725643, 14 , 731 )  p 2 q 18 r 2 s 36
    989  ( -277, 411 , 857 )   ( 1254329, 411 , 857 )  p 22 q 13 r 8 s 36
   1009  ( -107, 121 , 997 )   ( 1128169, 121 , 997 )  p 12 q 17 r 12 s 36
   1022  ( -5, 6 , 31 )   ( 37819, 6 , 31 )  p 16 q 16 r 14 s 36
   1025  ( -255, 353 , 929 )   ( 1314305, 353 , 929 )  p 28 q 9 r 32 s 32
   1034  ( -146, 163 , 1537 )   ( 1757946, 163 , 1537 )  p 8 q 18 r 5 s 37
   1037  ( -301, 459 , 881 )   ( 1389881, 459 , 881 )  p 26 q 11 r 16 s 36
   1070  ( -49, 53 , 800 )   ( 912759, 53 , 800 )  p 10 q 18 r 13 s 37
   1073  ( -113, 139 , 619 )   ( 813447, 139 , 619 )  p 20 q 15 r 20 s 36
   1085  ( -55, 59 , 3257 )   ( 3597915, 59 , 3257 )  p 2 q 19 r 2 s 38
   1090  ( 149, -115 , 512 )   ( 149, 720605 , 512 )  p 3 q 19 r 33 s 33
   1117  ( 127, -113 , 1105 )   ( 127, 1376257 , 1105 )  p 6 q 19 r 24 s 36
   1130  ( 82, -71 , 555 )   ( 82, 719881 , 555 )  p 7 q 19 r 29 s 35
   1154  ( -7, 9 , 32 )   ( 47321, 9 , 32 )  p 17 q 17 r 7 s 39
   1157  ( -337, 377 , 3437 )   ( 4413135, 377 , 3437 )  p 22 q 15 r 34 s 34
   1162  ( -43, 47 , 578 )   ( 726293, 47 , 578 )  p 9 q 19 r 9 s 39
   1169  ( -363, 593 , 941 )   ( 1793609, 593 , 941 )  p 32 q 7 r 28 s 36
   1198  ( 8, -7 , 59 )   ( 8, 80273 , 59 )  p 0 q 20 r 15 s 39
   1202  ( -29, 31 , 1804 )   ( 2205699, 31 , 1804 )  p 2 q 20 r 2 s 40
   1214  ( 12, -11 , 151 )   ( 12, 197893 , 151 )  p 4 q 20 r 17 s 39
   1226  ( -311, 379 , 1774 )   ( 2639889, 379 , 1774 )  p 16 q 18 r 10 s 40
   1229  ( -393, 671 , 953 )   ( 1996289, 671 , 953 )  p 34 q 5 r 32 s 36
   1250  ( -60, 67 , 619 )   ( 857560, 67 , 619 )  p 13 q 19 r 14 s 40
   1262  ( -36, 41 , 311 )   ( 444260, 41 , 311 )  p 8 q 20 r 1 s 41
   1265  ( -235, 293 , 1209 )   ( 1900265, 293 , 1209 )  p 20 q 17 r 16 s 40
   1297  ( -431, 829 , 901 )   ( 2244241, 829 , 901 )  p 36 q 1 r 36 s 36
   1298  ( 17, -16 , 389 )   ( 17, 527004 , 389 )  p 10 q 20 r 25 s 39
   1301  ( -429, 791 , 941 )   ( 2253761, 791 , 941 )  p 34 q 7 r 20 s 40
   1322  ( 343, -290 , 1933 )   ( 343, 3009162 , 1933 )  p 1 q 21 r 22 s 40
   1325  ( -61, 65 , 3977 )   ( 5355711, 65 , 3977 )  p 2 q 21 r 2 s 42
   1349  ( -961, 1301 , 3713 )   ( 6764847, 1301 , 3713 )  p 22 q 17 r 10 s 42
   1370  ( 10, -9 , 97 )   ( 10, 146599 , 97 )  p 7 q 21 r 26 s 40
   1394  ( -341, 412 , 2023 )   ( 3394731, 412 , 2023 )  p 14 q 20 r 5 s 43
   1397  ( -1279, 2045 , 3431 )   ( 7651251, 2045 , 3431 )  p 34 q 9 r 28 s 40
   1405  ( -191, 223 , 1375 )   ( 2245381, 223 , 1375 )  p 18 q 19 r 18 s 42
   1445  ( -465, 1109 , 803 )   ( 2763305, 1109 , 803 )  p 38 q 1 r 22 s 42
   1454  ( -16, 17 , 1091 )   ( 1611048, 17 , 1091 )  p 2 q 22 r 2 s 44
   1457  ( -1345, 2171 , 3551 )   ( 8338299, 2171 , 3551 )  p 28 q 15 r 4 s 44
   1469  ( -1351, 3593 , 2171 )   ( 8468667, 3593 , 2171 )  p 38 q 3 r 8 s 44
   1490  ( 151, -140 , 2227 )   ( 151, 3543360 , 2227 )  p 13 q 21 r 34 s 40
   1517  ( -19, 21 , 215 )   ( 358031, 21 , 215 )  p 14 q 21 r 16 s 44
   1522  ( -163, 212 , 713 )   ( 1408013, 212 , 713 )  p 18 q 20 r 3 s 45
   1550  ( -25, 27 , 386 )   ( 640175, 27 , 386 )  p 10 q 22 r 11 s 45
   1589  ( -67, 71 , 4769 )   ( 7690827, 71 , 4769 )  p 2 q 23 r 2 s 46
   1598  ( -10, 11 , 119 )   ( 207750, 11 , 119 )  p 20 q 20 r 29 s 43
   1601  ( 1283, -997 , 4523 )   ( 1283, 9296403 , 4523 )  p 4 q 23 r 40 s 40
   1610  ( 55, -51 , 802 )   ( 55, 1379821 , 802 )  p 5 q 23 r 19 s 45
   1649  ( 153, -139 , 1637 )   ( 153, 2951849 , 1637 )  p 8 q 23 r 28 s 44
   1682  ( 21, -20 , 841 )   ( 21, 1449904 , 841 )  p 19 q 21 r 41 s 41
   1685  ( 243, -211 , 1655 )   ( 243, 3198341 , 1655 )  p 10 q 23 r 38 s 42
   1729  ( -263, 313 , 1681 )   ( 3447889, 313 , 1681 )  p 12 q 23 r 0 s 48
   1730  ( -35, 37 , 2596 )   ( 4555125, 37 , 2596 )  p 2 q 24 r 2 s 48
   1742  ( 263, -217 , 1262 )   ( 263, 2656767 , 1262 )  p 4 q 24 r 34 s 44
   1745  ( -571, 1293 , 1025 )   ( 4045481, 1293 , 1025 )  p 40 q 7 r 8 s 48
   1754  ( -278, 313 , 2599 )   ( 5107926, 313 , 2599 )  p 13 q 23 r 10 s 48
   1757  ( -943, 1163 , 5057 )   ( 10929483, 1163 , 5057 )  p 26 q 19 r 26 s 46
   1765  ( -497, 739 , 1525 )   ( 3996457, 739 , 1525 )  p 30 q 17 r 12 s 48
   1790  ( 17, -16 , 335 )   ( 17, 630096 , 335 )  p 8 q 24 r 23 s 47
   1810  ( -73, 80 , 899 )   ( 1772063, 80 , 899 )  p 15 q 23 r 18 s 48
   1826  ( 103, -92 , 903 )   ( 103, 1837048 , 903 )  p 10 q 24 r 35 s 45
   1829  ( -529, 803 , 1557 )   ( 4316969, 803 , 1557 )  p 34 q 15 r 20 s 48
   1850  ( -111, 127 , 910 )   ( 1918561, 127 , 910 )  p 20 q 22 r 22 s 48
   1873  ( 13, -11 , 73 )   ( 13, 161089 , 73 )  p 0 q 25 r 24 s 48
   1874  ( 99, -89 , 928 )   ( 99, 1924687 , 928 )  p 1 q 25 r 17 s 49
   1877  ( -73, 77 , 5633 )   ( 10717743, 77 , 5633 )  p 2 q 25 r 2 s 50
   1898  ( 65, -58 , 563 )   ( 65, 1192002 , 563 )  p 5 q 25 r 26 s 48
   1934  ( -6, 7 , 43 )   ( 96706, 7 , 43 )  p 22 q 22 r 23 s 49
   1937  ( 1235, -1009 , 5591 )   ( 1235, 13222971 , 5591 )  p 8 q 25 r 44 s 44
   1949  ( -1549, 2213 , 5189 )   ( 14428047, 2213 , 5189 )  p 38 q 13 r 38 s 46
   1954  ( -91, 101 , 968 )   ( 2088917, 101 , 968 )  p 9 q 25 r 3 s 51
   1982  ( -32, 37 , 243 )   ( 554992, 37 , 243 )  p 16 q 24 r 11 s 51
   1985  ( -325, 347 , 5939 )   ( 12478035, 347 , 5939 )  p 20 q 23 r 32 s 48
   1994  ( -57, 61 , 994 )   ( 2103727, 61 , 994 )  p 11 q 25 r 13 s 51
   1997  ( -373, 465 , 1907 )   ( 4737257, 465 , 1907 )  p 26 q 21 r 22 s 50
   2026  ( 26, -19 , 71 )   ( 26, 196541 , 71 )  p 0 q 26 r 45 s 45
   2030  ( -19, 20 , 1523 )   ( 3132309, 20 , 1523 )  p 2 q 26 r 2 s 52
   2042  ( 226, -209 , 3049 )   ( 226, 6687759 , 3049 )  p 4 q 26 r 19 s 51
   2062  ( 31, -29 , 514 )   ( 31, 1123819 , 514 )  p 6 q 26 r 21 s 51
   2090  ( 487, -419 , 3070 )   ( 487, 7434549 , 3070 )  p 8 q 26 r 38 s 48
   2114  ( -31, 41 , 128 )   ( 357297, 41 , 128 )  p 23 q 23 r 5 s 53
   2117  ( -459, 599 , 1979 )   ( 5458085, 599 , 1979 )  p 38 q 15 r 46 s 46
   2129  ( -159, 173 , 2117 )   ( 4875569, 173 , 2117 )  p 16 q 25 r 20 s 52
   2162  ( -104, 109 , 3241 )   ( 7242804, 109 , 3241 )  p 17 q 25 r 29 s 51
   2170  ( 137, -121 , 1070 )   ( 137, 2619311 , 1070 )  p 12 q 26 r 42 s 48
   2189  ( -79, 83 , 6569 )   ( 14561307, 83 , 6569 )  p 2 q 27 r 2 s 54
   2197  ( -371, 451 , 2119 )   ( 5646661, 451 , 2119 )  p 18 q 25 r 6 s 54
   2210  ( 871, -680 , 3127 )   ( 871, 8836260 , 3127 )  p 5 q 27 r 47 s 47
   2222  ( 149, -136 , 1655 )   ( 149, 4008624 , 1655 )  p 14 q 26 r 41 s 49
   2237  ( -631, 939 , 1931 )   ( 6420821, 939 , 1931 )  p 34 q 19 r 14 s 54
   2269  ( -737, 1297 , 1711 )   ( 6825889, 1297 , 1711 )  p 42 q 13 r 18 s 54
   2282  ( -482, 565 , 3343 )   ( 8918538, 565 , 3343 )  p 16 q 26 r 7 s 55
   2285  ( 179, -165 , 2273 )   ( 179, 5602985 , 2273 )  p 10 q 27 r 32 s 52
   2305  ( -767, 1489 , 1585 )   ( 7086337, 1489 , 1585 )  p 48 q 1 r 48 s 48
   2309  ( -667, 1011 , 1967 )   ( 6876869, 1011 , 1967 )  p 38 q 17 r 22 s 54
   2354  ( -41, 43 , 3532 )   ( 8415591, 43 , 3532 )  p 2 q 28 r 2 s 56
   2357  ( -1483, 1913 , 6647 )   ( 20177403, 1913 , 6647 )  p 22 q 25 r 4 s 56
   2369  ( -583, 801 , 2153 )   ( 6998609, 801 , 2153 )  p 28 q 23 r 8 s 56
   2402  ( -632, 775 , 3463 )   ( 10180308, 775 , 3463 )  p 23 q 25 r 14 s 56
   2414  ( 221, -196 , 1787 )   ( 221, 4847508 , 1787 )  p 8 q 28 r 35 s 53
   2426  ( -107, 118 , 1203 )   ( 3204853, 118 , 1203 )  p 20 q 26 r 25 s 55
   2450  ( -269, 292 , 3655 )   ( 9670419, 292 , 3655 )  p 10 q 28 r 7 s 57
   2474  ( -86, 93 , 1231 )   ( 3275662, 93 , 1231 )  p 17 q 27 r 22 s 56
   2477  ( -1483, 1883 , 7037 )   ( 22096323, 1883 , 7037 )  p 34 q 21 r 34 s 54
   2494  ( -16, 17 , 311 )   ( 818048, 17 , 311 )  p 12 q 28 r 15 s 57
   2501  ( -2497, 4853 , 5153 )   ( 25027503, 4853 , 5153 )  p 50 q 1 r 50 s 50
   2510  ( -93, 110 , 611 )   ( 1809803, 110 , 611 )  p 22 q 26 r 17 s 57
   2522  ( 187, -162 , 1237 )   ( 187, 3591490 , 1237 )  p 1 q 29 r 26 s 56
   2525  ( -85, 89 , 7577 )   ( 19356735, 89 , 7577 )  p 2 q 29 r 2 s 58
   2549  ( -547, 711 , 2387 )   ( 7897349, 711 , 2387 )  p 26 q 25 r 10 s 58
   2570  ( 69, -65 , 1282 )   ( 69, 3472135 , 1282 )  p 7 q 29 r 23 s 57
   2573  ( -491, 1207 , 829 )   ( 5239119, 1207 , 829 )  p 50 q 5 r 14 s 58
   2602  ( 281, -229 , 1250 )   ( 281, 3983891 , 1250 )  p 9 q 29 r 51 s 51
   2609  ( -1417, 1751 , 7499 )   ( 24134667, 1751 , 7499 )  p 32 q 23 r 32 s 56
   2629  ( -653, 901 , 2383 )   ( 8634289, 901 , 2383 )  p 42 q 17 r 42 s 54
   2642  ( -239, 256 , 3949 )   ( 11109849, 256 , 3949 )  p 11 q 29 r 11 s 59
   2645  ( -877, 1869 , 1655 )   ( 9321857, 1869 , 1655 )  p 50 q 7 r 22 s 58
   2690  ( 124, -113 , 1335 )   ( 124, 3924823 , 1335 )  p 13 q 29 r 41 s 55
   2702  ( -22, 23 , 2027 )   ( 5539122, 23 , 2027 )  p 2 q 30 r 2 s 60
   2705  ( -2161, 7187 , 3095 )   ( 27814971, 7187 , 3095 )  p 52 q 1 r 4 s 60
   2714  ( 249, -209 , 1318 )   ( 249, 4253047 , 1318 )  p 4 q 30 r 38 s 56
   2717  ( -859, 965 , 8051 )   ( 24497331, 965 , 8051 )  p 14 q 29 r 8 s 60
   2750  ( -140, 163 , 1009 )   ( 3223140, 163 , 1009 )  p 20 q 28 r 14 s 60
   2765  ( -781, 1163 , 2385 )   ( 9811001, 1163 , 2385 )  p 38 q 21 r 16 s 60
   2798  ( -11, 12 , 139 )   ( 422509, 12 , 139 )  p 10 q 30 r 5 s 61
   2801  ( -2617, 4283 , 6743 )   ( 30886443, 4283 , 6743 )  p 44 q 17 r 20 s 60
   2810  ( 505, -449 , 4162 )   ( 505, 13114719 , 4162 )  p 17 q 29 r 53 s 53
   2834  ( -668, 799 , 4123 )   ( 13949616, 799 , 4123 )  p 22 q 28 r 13 s 61
   2845  ( -185, 199 , 2833 )   ( 8626225, 199 , 2833 )  p 18 q 29 r 24 s 60
   2882  ( 415, -377 , 4288 )   ( 415, 13554423 , 4288 )  p 1 q 31 r 19 s 61
   2885  ( -91, 95 , 8657 )   ( 25249611, 95 , 8657 )  p 2 q 31 r 2 s 62
   2897  ( 995, -889 , 8591 )   ( 995, 27771531 , 8591 )  p 4 q 31 r 28 s 60
   2917  ( 757, -593 , 2755 )   ( 757, 10245097 , 2755 )  p 6 q 31 r 54 s 54
   2926  ( -71, 79 , 724 )   ( 2349649, 79 , 724 )  p 24 q 28 r 30 s 60
   2954  ( 127, -122 , 4429 )   ( 127, 13458546 , 4429 )  p 16 q 30 r 37 s 59
   3002  ( 175, -167 , 4498 )   ( 175, 14028513 , 4498 )  p 11 q 31 r 29 s 61
   3005  ( -1021, 1157 , 8885 )   ( 30177231, 1157 , 8885 )  p 22 q 29 r 22 s 62
   3025  ( 205, -191 , 3013 )   ( 205, 9734641 , 3013 )  p 12 q 31 r 36 s 60
   3026  ( 28, -27 , 1513 )   ( 28, 4663093 , 1513 )  p 26 q 28 r 55 s 55
   3029  ( -859, 953 , 8999 )   ( 30145467, 953 , 8999 )  p 34 q 25 r 52 s 56
   3050  ( -71, 75 , 1522 )   ( 4870921, 75 , 1522 )  p 13 q 31 r 17 s 63
   3074  ( -47, 49 , 4612 )   ( 14327961, 49 , 4612 )  p 2 q 32 r 2 s 64
   3077  ( -361, 411 , 3029 )   ( 10585241, 411 , 3029 )  p 14 q 31 r 4 s 64
   3098  ( -45, 53 , 302 )   ( 1099835, 53 , 302 )  p 20 q 30 r 10 s 64
   3134  ( 19, -18 , 391 )   ( 19, 1284958 , 391 )  p 8 q 32 r 25 s 63
   3137  ( -757, 827 , 9347 )   ( 31916595, 827 , 9347 )  p 16 q 31 r 16 s 64
   3170  ( -440, 487 , 4711 )   ( 16478100, 487 , 4711 )  p 10 q 32 r 1 s 65
   3173  ( -623, 1117 , 1411 )   ( 8021967, 1117 , 1411 )  p 50 q 15 r 20 s 64
   3182  ( -412, 503 , 2297 )   ( 8910012, 503 , 2297 )  p 22 q 30 r 7 s 65
   3185  ( -615, 773 , 3029 )   ( 12109985, 773 , 3029 )  p 40 q 23 r 44 s 60
   3242  ( -167, 187 , 1602 )   ( 5800105, 187 , 1602 )  p 19 q 31 r 17 s 65
   3250  ( -175, 197 , 1604 )   ( 5853425, 197 , 1604 )  p 27 q 29 r 33 s 63
   3269  ( -97, 101 , 9809 )   ( 32395887, 101 , 9809 )  p 2 q 33 r 2 s 66
   3277  ( -1073, 2425 , 1927 )   ( 14262577, 2425 , 1927 )  p 54 q 11 r 6 s 66
   3314  ( 369, -299 , 1588 )   ( 369, 6485797 , 1588 )  p 7 q 33 r 53 s 59
   3317  ( -2659, 3815 , 8801 )   ( 41849931, 3815 , 8801 )  p 38 q 25 r 14 s 66
   3326  ( -22, 23 , 623 )   ( 2148618, 23 , 623 )  p 16 q 32 r 25 s 65
   3329  ( 851, -781 , 9923 )   ( 851, 35867427 , 9923 )  p 8 q 33 r 32 s 64
   3349  ( -947, 1411 , 2887 )   ( 14394949, 1411 , 2887 )  p 42 q 23 r 18 s 66
   3362  ( -7, 8 , 57 )   ( 218537, 8 , 57 )  p 29 q 29 r 34 s 64
   3365  ( 2207, -1795 , 9689 )   ( 2207, 40031835 , 9689 )  p 10 q 33 r 58 s 58
   3374  ( -523, 671 , 2384 )   ( 10308093, 671 , 2384 )  p 26 q 30 r 5 s 67
   3377  ( -2833, 4187 , 8783 )   ( 43802523, 4187 , 8783 )  p 52 q 15 r 52 s 60
   3389  ( -3187, 8099 , 5261 )   ( 45280227, 8099 , 5261 )  p 58 q 3 r 22 s 66
   3410  ( -260, 309 , 1657 )   ( 6704320, 309 , 1657 )  p 23 q 31 r 13 s 67
   3434  ( 109, -102 , 1711 )   ( 109, 6249982 , 1711 )  p 13 q 33 r 38 s 64
   3437  ( -991, 1499 , 2931 )   ( 15226901, 1499 , 2931 )  p 46 q 21 r 26 s 66
   3470  ( -25, 26 , 2603 )   ( 9122655, 26 , 2603 )  p 2 q 34 r 2 s 68
   3473  ( -617, 955 , 1747 )   ( 9384663, 955 , 1747 )  p 40 q 25 r 4 s 68
   3482  ( 502, -383 , 1623 )   ( 502, 7399633 , 1623 )  p 4 q 34 r 59 s 59
   3509  ( -1153, 2093 , 2571 )   ( 16367129, 2093 , 2571 )  p 58 q 7 r 50 s 62
   3530  ( 886, -755 , 5167 )   ( 886, 21367845 , 5167 )  p 8 q 34 r 47 s 63
   3557  ( -315, 347 , 3527 )   ( 13780133, 347 , 3527 )  p 26 q 31 r 34 s 66
   3569  ( -1159, 2037 , 2693 )   ( 16882529, 2037 , 2693 )  p 52 q 17 r 20 s 68
   3601  ( -1199, 2341 , 2461 )   ( 17293201, 2341 , 2461 )  p 60 q 1 r 60 s 60
   3629  ( -1987, 2459 , 10421 )   ( 46743507, 2459 , 10421 )  p 38 q 27 r 38 s 66
   3662  ( -39, 41 , 914 )   ( 3497249, 41 , 914 )  p 14 q 34 r 19 s 69
   3665  ( -211, 225 , 3653 )   ( 14213081, 225 , 3653 )  p 20 q 33 r 28 s 68
   3674  ( 313, -266 , 1791 )   ( 313, 7730362 , 1791 )  p 1 q 35 r 35 s 67
   3677  ( -103, 107 , 11033 )   ( 40961883, 107 , 11033 )  p 2 q 35 r 2 s 70
   3682  ( 137, -127 , 1832 )   ( 137, 7249985 , 1832 )  p 3 q 35 r 21 s 69
   3698  ( 236, -193 , 1067 )   ( 236, 4818687 , 1067 )  p 5 q 35 r 50 s 64
   3701  ( -149, 241 , 391 )   ( 2339181, 241 , 391 )  p 46 q 23 r 10 s 70
   3709  ( 577, -497 , 3631 )   ( 577, 15607969 , 3631 )  p 6 q 35 r 42 s 66
   3722  ( 46, -39 , 259 )   ( 46, 1135249 , 259 )  p 7 q 35 r 47 s 65
   3725  ( -1231, 2675 , 2283 )   ( 18469781, 2675 , 2283 )  p 58 q 11 r 14 s 70
   3749  ( 43, -41 , 1021 )   ( 43, 3988977 , 1021 )  p 22 q 33 r 52 s 64
   3754  ( 83, -79 , 1874 )   ( 83, 7346657 , 1874 )  p 9 q 35 r 27 s 69
   3790  ( 106, -95 , 937 )   ( 106, 3953065 , 937 )  p 18 q 34 r 57 s 63
   3794  ( -129, 139 , 1888 )   ( 7690567, 139 , 1888 )  p 11 q 35 r 7 s 71
   3845  ( -3535, 9407 , 5669 )   ( 57970755, 9407 , 5669 )  p 62 q 1 r 26 s 70
   3854  ( -163, 198 , 929 )   ( 4343621, 198 , 929 )  p 28 q 32 r 17 s 71
   3869  ( 33, -31 , 551 )   ( 33, 2259527 , 551 )  p 14 q 35 r 40 s 68
   3889  ( -1259, 2197 , 2953 )   ( 20029609, 2197 , 2953 )  p 48 q 23 r 0 s 72
   3890  ( -53, 55 , 5836 )   ( 22916043, 55 , 5836 )  p 2 q 36 r 2 s 72
   3898  ( -41, 46 , 385 )   ( 1680079, 46 , 385 )  p 15 q 35 r 6 s 72
   3905  ( -2653, 3515 , 10859 )   ( 56133123, 3515 , 10859 )  p 32 q 31 r 8 s 72
   3965  ( -745, 929 , 3783 )   ( 18683825, 929 , 3783 )  p 38 q 29 r 34 s 70
   3970  ( -355, 437 , 1904 )   ( 9294125, 437 , 1904 )  p 30 q 32 r 18 s 72
   3989  ( -1129, 1683 , 3437 )   ( 20424809, 1683 , 3437 )  p 46 q 25 r 20 s 72
   3997  ( 367, -335 , 3967 )   ( 367, 17323333 , 3967 )  p 18 q 35 r 54 s 66
   4034  ( 148, -143 , 6049 )   ( 148, 24998841 , 6049 )  p 19 q 35 r 43 s 69
   4037  ( -555, 647 , 3947 )   ( 18546533, 647 , 3947 )  p 34 q 31 r 38 s 70
   4085  ( -1177, 1779 , 3485 )   ( 21504617, 1779 , 3485 )  p 50 q 23 r 28 s 72
   4094  ( -13, 14 , 191 )   ( 839283, 14 , 191 )  p 32 q 32 r 50 s 68
   4097  ( -4093, 8003 , 8387 )   ( 67153923, 8003 , 8387 )  p 64 q 1 r 64 s 64
   4109  ( -109, 113 , 12329 )   ( 51124287, 113 , 12329 )  p 2 q 37 r 2 s 74
   4114  ( 236, -211 , 2033 )   ( 236, 9334877 , 2033 )  p 3 q 37 r 30 s 72
   4130  ( 376, -353 , 6175 )   ( 376, 27055983 , 6175 )  p 5 q 37 r 23 s 73
   4154  ( 319, -302 , 6217 )   ( 319, 27150846 , 6217 )  p 7 q 37 r 25 s 73
   4157  ( -529, 609 , 4079 )   ( 19488545, 609 , 4079 )  p 22 q 35 r 14 s 74
   4202  ( -146, 151 , 6301 )   ( 27111450, 151 , 6301 )  p 23 q 35 r 41 s 71
   4205  ( 1595, -1411 , 12437 )   ( 1595, 59005971 , 12437 )  p 10 q 37 r 46 s 70
   4226  ( -461, 499 , 6304 )   ( 28749939, 499 , 6304 )  p 11 q 37 r 5 s 75
   4229  ( -4171, 7583 , 9281 )   ( 71322027, 7583 , 9281 )  p 58 q 17 r 22 s 74
   4250  ( -386, 477 , 2035 )   ( 10676386, 477 , 2035 )  p 28 q 34 r 11 s 75
   4274  ( 283, -249 , 2104 )   ( 283, 10202287 , 2104 )  p 13 q 37 r 53 s 69
   4289  ( -463, 521 , 4233 )   ( 20390369, 521 , 4233 )  p 32 q 33 r 40 s 72
   4298  ( 71, -67 , 1286 )   ( 71, 5832453 , 1286 )  p 25 q 35 r 61 s 67
   4301  ( 1373, -1237 , 12773 )   ( 1373, 60843183 , 12773 )  p 14 q 37 r 50 s 70
   4330  ( 11, -10 , 113 )   ( 11, 536930 , 113 )  p 0 q 38 r 21 s 75
   4334  ( -28, 29 , 3251 )   ( 14215548, 29 , 3251 )  p 2 q 38 r 2 s 76
   4337  ( -4057, 10427 , 6647 )   ( 74053995, 10427 , 6647 )  p 64 q 9 r 4 s 76
   4349  ( -2287, 2801 , 12539 )   ( 66715947, 2801 , 12539 )  p 26 q 35 r 8 s 76
   4357  ( -1451, 2839 , 2971 )   ( 25315621, 2839 , 2971 )  p 66 q 1 r 66 s 66
   4373  ( -127, 173 , 479 )   ( 2851323, 173 , 479 )  p 50 q 25 r 44 s 72
   4402  ( -253, 287 , 2168 )   ( 10807163, 287 , 2168 )  p 27 q 35 r 27 s 75
   4430  ( 45, -43 , 1106 )   ( 45, 5098973 , 1106 )  p 10 q 38 r 29 s 75
   4465  ( -1355, 2149 , 3673 )   ( 25996585, 2149 , 3673 )  p 60 q 17 r 48 s 72
   4490  ( -446, 565 , 2127 )   ( 12087526, 565 , 2127 )  p 32 q 34 r 13 s 77
   4514  ( -248, 259 , 6763 )   ( 31697556, 259 , 6763 )  p 29 q 35 r 50 s 72
   4517  ( -1353, 2117 , 3755 )   ( 26525177, 2117 , 3755 )  p 62 q 15 r 58 s 70
   4526  ( 107, -103 , 3392 )   ( 107, 15836577 , 3392 )  p 14 q 38 r 35 s 75
   4562  ( 1105, -947 , 6688 )   ( 1105, 35552613 , 6688 )  p 1 q 39 r 37 s 75
   4565  ( -115, 119 , 13697 )   ( 63070155, 119 , 13697 )  p 2 q 39 r 2 s 78
   4573  ( -187, 239 , 863 )   ( 5039633, 239 , 863 )  p 30 q 35 r 6 s 78
   4589  ( -1867, 2171 , 13469 )   ( 71773827, 2171 , 13469 )  p 22 q 37 r 10 s 78
   4622  ( -29, 34 , 199 )   ( 1076955, 34 , 199 )  p 34 q 34 r 34 s 76
   4625  ( 3539, -2785 , 13127 )   ( 3539, 77083035 , 13127 )  p 8 q 39 r 68 s 68
   4637  ( -2743, 3467 , 13193 )   ( 77255163, 3467 , 13193 )  p 46 q 29 r 46 s 74
   4645  ( -1145, 1573 , 4219 )   ( 26904985, 1573 , 4219 )  p 42 q 31 r 18 s 78
   4682  ( -198, 217 , 2323 )   ( 11892478, 217 , 2323 )  p 11 q 39 r 1 s 79
   4685  ( -1327, 1979 , 4035 )   ( 28176917, 1979 , 4035 )  p 50 q 27 r 22 s 78
   4730  ( 82, -71 , 535 )   ( 82, 2918481 , 535 )  p 13 q 39 r 58 s 72
   4762  ( 35, -34 , 2381 )   ( 35, 11505026 , 2381 )  p 33 q 35 r 69 s 69
   4789  ( -1379, 2083 , 4087 )   ( 29549509, 2083 , 4087 )  p 54 q 25 r 30 s 78
   4802  ( -59, 61 , 7204 )   ( 34886589, 61 , 7204 )  p 2 q 40 r 2 s 80
   4814  ( 78, -73 , 1199 )   ( 78, 6147551 , 1199 )  p 4 q 40 r 23 s 79
   4817  ( -459, 509 , 4769 )   ( 25424585, 509 , 4769 )  p 16 q 39 r 8 s 80
   4850  ( -584, 637 , 7225 )   ( 38131284, 637 , 7225 )  p 17 q 39 r 14 s 80
   4862  ( 41, -36 , 299 )   ( 41, 1653116 , 299 )  p 8 q 40 r 46 s 76
   4865  ( -3421, 4595 , 13427 )   ( 87680451, 4595 , 13427 )  p 40 q 33 r 16 s 80
   4901  ( -1429, 4151 , 2181 )   ( 31034561, 4151 , 2181 )  p 70 q 1 r 20 s 80
   4910  ( -109, 120 , 1217 )   ( 6564779, 120 , 1217 )  p 32 q 36 r 43 s 77
   4922  ( -1037, 1213 , 7210 )   ( 41459043, 1213 , 7210 )  p 19 q 39 r 1 s 81
   4925  ( -4645, 7697 , 11729 )   ( 95677695, 7697 , 11729 )  p 62 q 19 r 38 s 78
   4942  ( -74, 79 , 1231 )   ( 6474094, 79 , 1231 )  p 12 q 40 r 9 s 81
   4949  ( -3721, 5153 , 13421 )   ( 91926447, 5153 , 13421 )  p 58 q 23 r 58 s 74
   4994  ( -332, 349 , 7477 )   ( 39083376, 349 , 7477 )  p 14 q 40 r 17 s 81
   4997  ( -3583, 4853 , 13727 )   ( 92847843, 4853 , 13727 )  p 46 q 31 r 28 s 80
   5005  ( -377, 409 , 4975 )   ( 26947297, 409 , 4975 )  p 30 q 37 r 42 s 78
   5009  ( -1243, 1713 , 4541 )   ( 31327529, 1713 , 4541 )  p 56 q 25 r 52 s 76
   5042  ( 817, -603 , 2308 )   ( 817, 15756853 , 2308 )  p 1 q 41 r 71 s 71
   5045  ( -121, 125 , 15137 )   ( 76996911, 125 , 15137 )  p 2 q 41 r 2 s 82
   5054  ( -23, 24 , 631 )   ( 3310393, 24 , 631 )  p 16 q 40 r 23 s 81
   5057  ( 521, -471 , 5009 )   ( 521, 27965681 , 5009 )  p 4 q 41 r 32 s 80
   5090  ( 652, -599 , 7585 )   ( 652, 41926929 , 7585 )  p 7 q 41 r 34 s 80
Tue Jul  7 10:02:21 PDT 2020

\=======================

1voto

Stephan Aßmus Puntos 16

Bien, esto puede ser discutido en términos de Salto de Vieta. Sin embargo, para cada $k,$ todas las soluciones primitivas pueden encontrarse mediante un número finito de parametizaciones de tipo triple pitagórico. Hice 5090, la mayor $k$ en la respuesta con sólo $k$ y soluciones:

La primera de varias matrices que aparecen a continuación significa $$ x = 1837 u^2 + 4226 uv + 1549 v^2 \; , \; \; y = 1549 u^2 - 1128 uv -840 v^2 \; , \; \; z = -840 u^2 -552uv + 1837v^2 $$ que resuelve $$ x^2 + y^2 + z^2 = 5090 ( yz + zx +xy). $$ Para obtener soluciones primitivas estamos tomando $u,v$ coprime. Entonces, si $\gcd(x,y,z) > 1$ descartamos ese triple.

   1837   4226   1549
   1549  -1128   -840
   -840   -552   1837

   1897   4208   1480
   1480  -1248   -831
   -831   -414   1897

   2085   4098   1237
   1237  -1624   -776
   -776     72   2085

   2319   3786    847
    847  -2092   -620
   -620    852   2319

   2355   3708    772
    772  -2164   -581
   -581   1002   2355

   2449   3426    537
    537  -2352   -440
   -440   1472   2449

   2455   3402    519
    519  -2364   -428
   -428   1508   2455

   2539   2796    132
    132  -2532   -125
   -125   2282   2539

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X