Con las distribuciones de nuestros vectores aleatorios:
$\mathbf x_i | \mathbf \mu \sim N(\mu , \mathbf \Sigma)$
$\mathbf \mu \sim N(\mathbf \mu_0, \mathbf \Sigma_0)$
Por la regla de Bayes, la distribución posterior se parece:
$p(\mu| \{\mathbf x_i\}) \propto p(\mu) \prod_{i=1}^N p(\mathbf x_i | \mu)$
Así que:
$\ln p(\mu| \{\mathbf x_i\}) = -\frac{1}{2}\sum_{i=1}^N(\mathbf x_i - \mu)'\mathbf \Sigma^{-1}(\mathbf x_i - \mu) -\frac{1}{2}(\mu - \mu_0)'\mathbf \Sigma_0^{-1}(\mu - \mu_0) + const$
$ = -\frac{1}{2} N \mu' \mathbf \Sigma^{-1} \mu + \sum_{i=1}^N \mu' \mathbf \Sigma^{-1} \mathbf x_i -\frac{1}{2} \mu' \mathbf \Sigma_0^{-1} \mu + \mu' \mathbf \Sigma_0^{-1} \mu_0 + const$
$ = -\frac{1}{2} \mu' (N \mathbf \Sigma^{-1} + \mathbf \Sigma_0^{-1}) \mu + \mu' (\mathbf \Sigma_0^{-1} \mu_0 + \mathbf \Sigma^{-1} \sum_{i=1}^N \mathbf x_i) + const$
$= -\frac{1}{2}(\mu - (N \mathbf \Sigma^{-1} + \mathbf \Sigma_0^{-1})^{-1}(\mathbf \Sigma_0^{-1} \mu_0 + \mathbf \Sigma^{-1} \sum_{i=1}^N \mathbf x_i))' (N \mathbf \Sigma^{-1} + \mathbf \Sigma_0^{-1}) (\mu - (N \mathbf \Sigma^{-1} + \mathbf \Sigma_0^{-1})^{-1}(\mathbf \Sigma_0^{-1} \mu_0 + \mathbf \Sigma^{-1} \sum_{i=1}^N \mathbf x_i)) + const$
Que es la densidad logarítmica de una gaussiana:
$\mu| \{\mathbf x_i\} \sim N((N \mathbf \Sigma^{-1} + \mathbf \Sigma_0^{-1})^{-1}(\mathbf \Sigma_0^{-1} \mu_0 + \mathbf \Sigma^{-1} \sum_{i=1}^N \mathbf x_i), (N \mathbf \Sigma^{-1} + \mathbf \Sigma_0^{-1})^{-1})$
Usando la identidad de Woodbury en nuestra expresión para la matriz de covarianza:
$(N \mathbf \Sigma^{-1} + \mathbf \Sigma_0^{-1})^{-1} = \mathbf \Sigma(\frac{1}{N} \mathbf \Sigma + \mathbf \Sigma_0)^{-1} \frac{1}{N} \mathbf \Sigma_0$
Lo que proporciona la matriz de covarianza en la forma que la OP quería. Usando esta expresión (y su simetría) en la expresión para la media tenemos:
$\mathbf \Sigma(\frac{1}{N} \mathbf \Sigma + \mathbf \Sigma_0)^{-1} \frac{1}{N} \mathbf \Sigma_0 \mathbf \Sigma_0^{-1} \mu_0 + \frac{1}{N} \mathbf \Sigma_0(\frac{1}{N} \mathbf \Sigma + \mathbf \Sigma_0)^{-1} \mathbf \Sigma \mathbf \Sigma^{-1} \sum_{i=1}^N \mathbf x_i$
$= \mathbf \Sigma(\frac{1}{N} \mathbf \Sigma + \mathbf \Sigma_0)^{-1} \frac{1}{N} \mu_0 + \mathbf \Sigma_0(\frac{1}{N} \mathbf \Sigma + \mathbf \Sigma_0)^{-1} \sum_{i=1}^N (\frac{1}{N} \mathbf x_i)$
Que es la forma requerida por el OP para la media.