$$1 + {1 \over 3} - {1 \over 2} + {1 \over 5} + {1 \over 7} - {1 \over 4} + {1 \over 9} + {1 \over 11} - {1 \over 6} + +-...$$
Quiero mostrar primero que $S_{3n}$ , $S_{3n+1}$ y $S_{3n+2}$ converge al mismo límite, muestro
$$S_{3n} = (1 + {1 \over 3} - {1 \over 2}) + ({1 \over 5} + {1 \over 7} - {1 \over 4}) + ({1 \over 9} + {1 \over 11} - {1 \over 6}) + ... + ({1 \over 4n-3} + {1 \over 4n-1} - {1 \over 2n})$$
pero, ¿cómo proceder a partir de aquí?