Dejemos que $X,Y$ sean variables aleatorias tales que $X\overset{\underset{d}{}}{=}\mathcal{P}\left(\lambda_{1}\right)$ et $Y\overset{\underset{d}{}}{=}\mathcal{P}\left(\lambda_{2}\right)$ . Calcular $\mathbb{E}[Y|X+Y=z]$ , donde $z$ es un número entero no negativo.
Intento:
$X+Y\overset{\underset{d}{}}{=}\mathcal{P}\left(\lambda_{1}+\lambda_{2}\right)$ Así que
\begin{align*} p_{Y|X+Y}(y|z)&=\frac{\mathbb{P}(Y=y)\mathbb{P}(X=z-y)}{\mathbb{P}(X+Y=z)}\\ &=\binom{z}{x}\left ( \frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} \right )^{x}\left ( \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} \right )^{z-x}. \end{align*}
Por lo tanto, $Y\mid X+Y\overset{\underset{d}{}}{=}\text{Bin}\left(z,\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)$ et
$$\mathbb{E}[Y|X+Y=z]=\frac{z\lambda_{2}}{\lambda_{2}+\lambda_{1}},\text{ }\forall z\in\mathbb{N}_{0}.$$