$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\bbox[10px,#ffd]{\ds{\int_{0}^{1}\int_{0}^{1}\cdots\int_{0}^{1} \bracks{x_{1} + x_{2} + \cdots + x_{n} < x}\dd x_{1} \,\dd x_{2}\ldots\dd x_{n}}} \\[5mm] = &\ \int_{0}^{1}\int_{0}^{1}\cdots\int_{0}^{1}\ \underbrace{\int_{c - \infty\ic}^{c + \infty\ic} {\expo{\pars{x - x_{1} - x_{2} - \cdots - x_{n}}s} \over s}\,{\dd s \over 2\pi\ic}}_{\ds{\bracks{x - x_{1} - x_{2} - \cdots - x_{n} > 0}}}\ \dd x_{1}\,\dd x_{2}\ldots\dd x_{n} \end{align}
donde $\ds{c >0}$ .
Entonces, \begin{align} &\bbox[10px,#ffd]{\ds{\int_{0}^{1}\int_{0}^{1}\cdots\int_{0}^{1} \bracks{x_{1} + x_{2} + \cdots + x_{n} < x}\dd x_{1} \,\dd x_{2}\ldots\dd x_{n}}} \\[5mm] = &\ \int_{c - \infty\ic}^{c + \infty\ic}{\expo{xs} \over s} \pars{\int_{0}^{1}\expo{-s\xi}\dd\xi}^{n}{\dd s \over 2\pi\ic} = \int_{c - \infty\ic}^{c + \infty\ic}{\expo{xs} \over s} \pars{\expo{-s} - 1 \over -s}^{n}{\dd s \over 2\pi\ic} \\[5mm] = &\ \int_{c - \infty\ic}^{c + \infty\ic} {\expo{xs} \over s^{n + 1}}\pars{1 - \expo{-s}}^{n}{\dd s \over 2\pi\ic} = \int_{c - \infty\ic}^{c + \infty\ic} {\expo{xs} \over s^{n + 1}}\sum_{k = 0}^{n}{n \choose k} \pars{-\expo{-s}}^{k}{\dd s \over 2\pi\ic}\label{1}\tag{1} \\[5mm] = &\ \sum_{k = 0}^{n}{n \choose k}\pars{-1}^{k}\ \underbrace{\int_{c - \infty\ic}^{c + \infty\ic} {\expo{\pars{x - k}s} \over s^{n + 1}}{\dd s \over 2\pi\ic}} _{\ds{\bracks{x - k > 0}\,{\pars{x - k}^{n} \over n!}}}\ =\ \left.{1 \over n!}\sum_{k = 0}^{n}\pars{-1}^{k}{n \choose k} \pars{x - k}^{n}\,\right\vert_{\ k\ <\ x} \\[5mm] = &\ \bbx{{1 \over n!}\sum_{k = 0}^{N}\pars{-1}^{k}{n \choose k} \pars{x - k}^{n}\quad\mbox{where}\quad N \equiv \min\braces{n,\left\lfloor x\right\rfloor}} \end{align}