Una ecuación de Fokker Planck para la densidad prob. $\rho$ puede escribirse en forma de ecuación de continuidad $$\frac{\partial \rho(x,t)}{\partial t} = - \nabla \cdot \left[ g(x,t) \rho(x,t) \right].$$
El término $$ \left[ g(x,t) \rho(x,t) \right] $$ es a menudo llamado el corriente de probabilidad o el flujo de probabilidad.
Me preguntaba si existe un nombre para el término $$ g(x,t) .$$ Es un campo vectorial, pero ¿hay alguna caracterización más específica o descriptiva para este término?